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 A B S T R A C T

Metafrontier analysis is widely used to account for technological heterogeneity among producers. The approach 
involves combining a number of group-specific production possibilities sets to form a production possibilities 
metaset. Even though the union of the group sets normally results in a nonconvex metaset, most authors 
proceed as if this metaset is convex. Kerstens, O’Donnell and Van de Woestyne (2019) obtain new results on 
the union operator on sets under various assumptions and empirically illustrate that the popular convexification 
strategy is highly questionable. In this paper we transpose their results on the union operator from a production 
to a cost context: this is new. We then explore the extent to which convexity of the cost function is corroborated 
using a newly developed test. Furthermore, we check to which extent a convexification strategy is tenable 
when estimating a cost metafrontier. We use an original banking data set from China and the USA to illustrate 
the main issues. We establish that the cost function is not convex in the outputs for China and that the 
convexification strategy leads to potentially-biased estimates of the cost metafrontier and associated measures 
of efficiency.
1. Introduction

There is ample evidence that large and persistent differences in 
productivity levels exist across businesses (see, e.g., Syverson, 2011). 
For instance, in the USA a plant at the 90th percentile of the produc-
tivity distribution makes almost twice as much output with the same 
inputs as a plant at the 10th percentile, while in developing countries 
like China and India even larger productivity differences are recorded: 
plants at the 90th percentile of the productivity distribution make 
almost five times as much output given the same inputs as a plant at 
the 10th percentile. The question why businesses persistently differ in 
their measured productivity levels has attracted much attention and the 
causes are manifold (see the survey in Syverson (2011)). There is a wide 
consensus that heterogeneity in performance can be due to differences 
in the availability of production technologies (i.e., the techniques that 
are available for transforming inputs into outputs) and to differences 
in production environments (e.g., economic infrastructure, topography, 
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climate, etc.). Producers often have limited direct control over these 
variables.

Since the publication of Nishimizu and Page (1982), there is also 
widespread acknowledgment that at least part of this heterogeneity 
in productivity may be due to technical inefficiencies (i.e., failure 
to make the best use of available production technologies). This has 
given an impetus to a large literature in economics and in operations 
research investigating a variety of inefficiencies using so-called fron-
tier estimators (see, e.g., Casu et al. (2013) for an example). Within 
this frontier-based literature, a variety of alternative proposals have 
been put forward to account for heterogeneity in production frontiers. 
Some of the most popular methods involve the use of latent class 
models (e.g., Orea & Kumbhakar, 2004), the aggregation over groups 
or industries (e.g., Mayer & Zelenyuk, 2014), and the use of various 
clustering methods (e.g., Triantis et al., 2010), among others. It is our 
understanding that no theoretical or empirical review has carefully 
https://doi.org/10.1016/j.ejor.2025.05.048
Received 5 October 2024; Accepted 23 May 2025
vailable online 3 June 2025 
377-2217/© 2025 Elsevier B.V. All rights are reserved, including those for text and
 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
https://orcid.org/0000-0003-3358-4332
https://orcid.org/0000-0002-0107-7371
https://orcid.org/0000-0002-4584-2784
https://orcid.org/0000-0002-5306-7685
mailto:k.kerstens@ieseg.fr
mailto:c.odonnell1@uq.edu.au
mailto:ignace.vandewoestyne@kuleuven.be
mailto:shironz@163.com
https://doi.org/10.1016/j.ejor.2025.05.048
https://doi.org/10.1016/j.ejor.2025.05.048
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2025.05.048&domain=pdf


K. Kerstens et al. European Journal of Operational Research 328 (2026) 324–335 
considered how these different methods account for heterogeneity in 
frontiers.

This contribution accounts for heterogeneity using a particular fron-
tier estimation method that goes back to Hayami and Ruttan (1970). 
Those authors ‘‘call the envelope of all known and potentially discover-
able activities a secular or ‘‘meta-production function’’.’’ (p. 898). Their 
meta-production function gives the maximum output obtainable from 
given inputs and a given set of production technologies (i.e., stock of 
knowledge). Different firms may choose a different specific technology 
from the set of available technologies depending on a variety of circum-
stances (e.g., regulation, relative prices, etc.). Parts of this literature 
account for the possibility of inefficiency (e.g., Lau & Yotopoulos, 
1989).

These traditional ideas have been formally transposed into a produc-
tion frontier framework by Battese and Rao (2002) and Battese et al. 
(2004). O’Donnell et al. (2008) subsequently refined some loose ends 
in the methodology and finalized the formal framework for making ef-
ficiency comparisons across groups of firms using both stochastic para-
metric and deterministic nonparametric estimation approaches. Their 
seminal article defines a production possibilities metaset as the union 
of underlying group-specific production possibilities sets (see O’Donnell 
et al. (2008, property R.3, p. 235)). The boundary of this metaset is 
referred to as a production metafrontier, and the boundaries of the 
group-specific sets are called group-specific production frontiers (or 
group frontiers).

In the last decade, metafrontier estimation has become increasingly 
popular and has been applied across a variety of sectors. Examples 
can be drawn from agriculture (e.g., Chen & Song, 2008), banking 
(e.g., Casu et al., 2013), hotels (e.g., Huang et al., 2013), and wastewa-
ter treatment plants (e.g., Sala-Garrido et al., 2011) to name but a few. 
The basic metafrontier concept has also been applied in a variety of 
ways: one case is the development of cost metafrontiers (e.g., Huang & 
Fu, 2013); another example is the computation of productivity indices 
relative to metafrontiers (see, e.g., Casu et al. (2013) and Huang et al. 
(2015) for a primal and a dual Malmquist index respectively); a final ex-
ample is the development of more elaborate efficiency decompositions 
(see Tsekouras et al., 2017).

Group-specific production possibilities sets (PPSs) are often char-
acterized by some standard regularity properties, one of which is 
convexity.2 This convexity property is normally justified by a time 
divisibility argument (e.g., Shephard (1970, p. 15) or O’Donnell (2018, 
p. 60)). Importantly, even if group-specific PPSs are convex, the metaset 
defined by their union is generally nonconvex (see O’Donnell et al. 
(2008, p. 237)). This obvious mathematical fact is largely ignored in the 
productivity and efficiency literature. In the seminal article by O’Don-
nell et al. (2008), for example, the authors adopt a convexification 
strategy insofar as they estimate the production metafrontier as the 
boundary of a convex metaset (O’Donnell et al. (2008, p. 239), but see 
also, e.g., Battese and Rao (2002) and Battese et al. (2004)). A convex-
ification strategy refers to the methodological approach of assuming 
convexity in a production or cost metafrontier even when the actual 
metafrontier may be nonconvex. Since this convexification strategy 
need normally not be valid, estimates of the production metafrontier 
risk being biased.

Kerstens et al. (2019) develop new results on the union operation 
on sets under various assumptions and deliver convincing empirical 
evidence that a convexification strategy yields statistically significant 
biases. In a similar vein, the empirical statistically significant biases 
of a convexification strategy upon the Malmquist and Hicks-Moorsteen 
productivity indices is documented in Jin et al. (2020).

Even though the vast majority of articles adopting a metafrontier ap-
proach appear to apply a convexification strategy, some articles do not 
adopt such a questionable strategy: examples include Afsharian et al. 

2 A complete list with abbreviations is found in Appendix C.
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(2018), Huang et al. (2013), Sala-Garrido et al. (2011), Tiedemann 
et al. (2011), and (partially) Walheer (2018), among others.3 However, 
these studies do not document the bias inherent in a convexification 
strategy.

This focus on the cost function is triggered by seminal contributions 
to axiomatic production theory that show that if the PPS is convex, 
then the cost function is convex in the outputs (see Jacobsen (1970, 
Proposition 5.2 (Q.9)) or Shephard (1970, Proposition 72 (𝑄.11))). 
Thus, using contraposition, when the cost function is nonconvex in the 
outputs, then the PPS is nonconvex. Kerstens and Van de Woestyne 
(2021) systematically review empirical evidence and illustrate a very 
substantial effect of convexity on cost function estimates and on the 
determination of scale economies (pointing even to the possibility of 
contradictory results).

The purpose of this paper is to investigate for the very first time 
the impact of convexity on the cost function and the effect of a 
convexification strategy on the estimation of cost metafrontiers and 
associated measures of efficiency. We also provide an empirical illus-
tration of the impact of convexity on the cost function and the effect 
of convexification by using Chinese and USA banking data. To the best 
of our knowledge, no such investigation is available in the literature 
while cost functions and also cost metafrontiers seem to be very widely 
used.4 We anticipate two major results. First, some recent contributions 
have tested and rejected the convexity of the PPS for banks (e.g., Wilson 
(2021) and Wilson and Zhao (2023)). Based on the statistical results for 
cost efficiency established in Simar and Wilson (2020b), we first extend 
the convexity test proposed by Kneip et al. (2016) and augmented 
by Simar and Wilson (2020a) for PPS to the cost function: this is new. 
This new convexity test for the cost function is applied to Chinese and 
USA banking data. We find for the first time evidence that Chinese 
banks face a nonconvex cost function while USA banks seem to face 
a convex cost function: we are unaware of any other test of convexity 
of the cost function. Second, the cost metafrontier of Chinese and USA 
banking data is clearly affected by a convexification strategy yielding 
biased results. Thus, this almost universally adopted convexification 
strategy should absolutely be abandoned in the future.

Our contribution has the following structure. Section 2 develops the 
geometric intuition behind our claim that a convexification strategy 
may create biases in the estimation of cost metafrontiers. Section 3 
presents a formal mathematical treatment of the metafrontier method-
ology with a special focus on how the union operator applies to 
cost functions. Section 4 explains how deterministic nonparametric 
frontier estimators can be used to estimate convex and nonconvex 
group-specific cost frontiers and associated cost metafrontiers. Sec-
tion 5 presents an empirical illustration using banking data from China 
and the USA and makes use of advanced statistical testing tools. Fi-
nally, Section 6 summarizes our key results and wraps up with some 
concluding comments.

2. Production metafrontiers, cost metafrontiers and the convexi-
fication strategy: Graphical illustration

We start by reminding the reader about the intuition underlying 
the metafrontier approach. The metafrontier approach can be used 
whenever firms can be classified into groups, and when firms in dif-
ferent groups choose input–output combinations from potentially dif-
ferent PPSs. To be concrete, we consider the traditional case where 
all firms operating in a given period can be classified into groups 
according to the technologies they use. Consequently, we generally 
refer to group-specific sets and frontiers as technology-specific sets and 
frontiers.5

3 To put things in perspective, a Google Scholar search on 12 February 2025 
obtains 12400 results for the expression ‘‘metafrontier production’’.

4 A Google Scholar search on 12 February 2025 obtains 10900 results for 
the expression ‘‘metafrontier cost function’’.
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Fig. 1. (a) Production frontiers in input–output space (b) Cost frontiers in cost-output space.
We follow O’Donnell (2016, p. 328) and define a technology to be 
‘‘a technique, method or system for transforming inputs into outputs 
. . . ’’. Fig.  1(a) illustrates technology-specific production frontiers in the 
simple case where firms use one input to produce one output and 
only two technologies are available. Let 𝑡1 denote the set of input–
output combinations that are possible using technology 1. This set is 
represented in Fig.  1(a) by the area above the horizontal axis and below 
the polyline 𝐴1𝐵1𝐶1𝐷1; this polyline is known as the technology-1 
production frontier. Similarly, let 𝑡2 denote the set of input–output com-
binations that are possible using technology 2. This set is represented by 
the area above the horizontal axis and below the polyline 𝐴2𝐵2𝐶2𝐷2; 
this polyline is known as the technology-2 production frontier. Note 
that both of the technology-specific sets 𝑡1 and 𝑡2 are convex. The 
convexity assumption on these sets implies perfect time-divisibility, 
i.e., that it is meaningful to combine observations belonging to each 
set in a linear way.6

Fig.  1(a) also illustrates the concept of a production metafrontier. 
Let 𝑇  denote the set of input–output combinations that are possible 
using the two technologies that are available. This metaset is given by 
the union of 𝑡1 and 𝑡2. It is represented in Fig.  1(a) by the area above the 
horizontal axis and below the polyline 𝐴2𝐵2𝐸𝐵1𝐶1𝐷1. This polyline is 
known as the period-𝑡 production metafrontier. Clearly, this metaset 
𝑇  is nonconvex. The convexification strategy involves convexifying 
𝑇  by adding the points in the triangle 𝐵2𝐸𝐵1𝐵2: these points are 
only feasible (i.e., convexification is only valid) if it is possible to use 
technology 1 some of the time and technology 2 the rest of the time.

Assuming perfect time divisibility, it may make sense to compare 
any two points within the set 𝑡1 to learn how one can improve the 
performance of firms that use technology 1, and it may make sense 
to do the same for any two points within the set 𝑡2. But, if firms are 
locked into using either technology 1 or technology 2, then one cannot 
learn how to improve their performance by a comparison of two points 
belonging to different sets.

5 Translating our results to situations where firms are classified according to 
other criteria is straightforward but may involve slightly different terminology. 
For instance, if firms are classified into groups according to the production 
environments in which they operate, then group-specific sets and frontiers 
might be referred to as environment-specific sets and frontiers; if production 
environments are viewed as states of nature, then they might be referred to 
as state-contingent sets and frontiers.

6 Shephard (1970, p. 15) states that convexity is only ‘‘valid for time 
divisibly-operable technologies’’.
326 
In other words, it should be realized that a convexification strategy 
is to some extent self-contradictory: it runs counter the very idea of 
distinguishing between different production possibilities sets and only 
allowing for the convexity of each set. Otherwise stated, the union 
operator on technology-specific sets does not preserve convexity of the 
resulting metaset.

We can now consider the measurement of efficiency with respect 
to these frontiers. Consider the firm operating at point 𝐹0, and recall 
that the firm can only use one technology (not a combination of both). 
Recall that in this case the production metafrontier is given by the 
polyline 𝐴2𝐵2𝐸𝐵1𝐶1𝐷1. Assume that the firm uses technology 1, then 
it can minimize the input required to produce its output by moving 
to point 𝐹1 on the technology-1 production frontier. If instead it had 
used technology 2, then it could have minimized input use by moving 
to point 𝐹2 on the metafrontier. Full technical efficiency would have 
required that it had opted to use technology 2 and operate at 𝐹2. 
The input-oriented technical efficiency (ITE) of a firm is an input-
oriented measure of the distance from an observed point to a point 
on the metafrontier. The ITE of the firm operating at 𝐹0, for example, 
is computed as the input used at 𝐹2 divided by the input used at 𝐹0. 
The ITE of a firm can be broken into the product of an input-oriented 
metatechnology ratio (IMR) and a measure of residual input-oriented 
technical efficiency (RITE). The IMR is an input-oriented measure 
of how well the firm has initially chosen its technology among the 
available options, while RITE is an input-oriented measure of how well 
its chosen technology has been used. Assuming that the firm operating 
at 𝐹0 had chosen technology 1, for example, then its IMR would be 
computed as the input used at 𝐹2 divided by the input used at 𝐹1; its 
RITE would be computed as the input used at 𝐹1 divided by the input 
used at 𝐹0.

It is important to note that if the firm counterfactually had been able 
to use technology 1 some of the time and technology 2 the rest of the 
time, then the production metafrontier would have been given by the 
polyline 𝐴2𝐵2𝐵1𝐶1𝐷1. In this counterfactual case, the firm would have 
been able to minimize input use by moving to 𝐹3 on the metafrontier. 
The ITE of the firm operating at 𝐹0 would then have been computed as 
the input used at 𝐹3 divided by the input used at 𝐹0. Assuming that the 
firm had chosen technology 1, then the IMR would have been computed 
as the input used at 𝐹3 divided by the input used at 𝐹1. Its RITE would 
still have been computed as the input used at 𝐹1 divided by the input 
used at 𝐹0. Hence, it follows that incorrectly convexifying the metaset 
leads to downwardly biased measures of ITE and IMR (but not RITE).
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In this contribution we consider the metafrontier approach in a cost 
frontier context. Fig.  1(b) illustrates technology-specific cost frontiers 
in the simple case where price-taking firms produce one output and 
only two technologies are available. Let 𝑐1(𝑦,𝑤) denote the minimum 
cost of producing 𝑦 when using technology 1 and when input prices are 
given by 𝑤. This function is represented in Fig.  1(b) by the polyline 
𝐺1𝐻1𝐼1𝐽1. This polyline is known as the technology-1 cost frontier: all 
cost-output combinations to the right of the vertical axis and above this 
frontier are possible when using technology 1. Similarly, let 𝑐2(𝑦,𝑤)
denote the minimum cost of producing 𝑦 when using technology 2 
and when input prices are given by 𝑤. This function is represented 
in Fig.  1(b) by the polyline 𝐺2𝐻2𝐼2𝐽2. This polyline is known as the 
technology-2 cost frontier: all cost-output combinations to the right 
of the vertical axis and above this frontier are possible when using 
technology 2.

Fig.  1(b) also illustrates the concept of a cost metafrontier. Let 
𝐶(𝑦,𝑤) denote the minimum cost of producing 𝑦 when using the two 
technologies available and when input prices are given by 𝑤. This 
function is represented in Fig.  1(b) by the polyline 𝐺2𝐻2𝐾𝐼1𝐽1. This 
polyline is known as the cost metafrontier: all cost-output combinations 
to the right of the vertical axis and above this metafrontier are possible 
when using the available technologies. Clearly, this set of cost-output 
combinations is nonconvex. The convexification strategy now involves 
adding the points in the triangle 𝐻2𝐼1𝐾𝐻2. Again, points in this 
triangle are only feasible (i.e., the convexification strategy is only valid) 
if it would be possible to use technology 1 some of the time and 
technology 2 the rest of the time.

But, as argued for the metaset above, this convexification strategy is 
self-contradictory and does not allow to learn from proper comparisons 
among the group cost functions.

We can now consider the measurement of cost efficiency with 
respect to these cost frontiers. Consider the firm operating at point 𝐿0, 
and again recall that this firm is only able to use one technology (not 
a combination of both). Recall that in this case the cost metafrontier 
is given by the polyline 𝐺2𝐻2𝐾𝐼1𝐽1. Assume that the firm uses tech-
nology 1, then it minimizes the cost of producing its output by moving 
to point 𝐿1 on the technology-1 cost frontier. If instead it had used 
technology 2, then it could have minimized cost by moving to point 
𝐿2 on the metafrontier. Full cost efficiency would have required that 
it use technology 2 and operate at 𝐿2. The cost efficiency (CE) of a 
firm is a cost-oriented measure of the distance from an observed point 
to a point on the metafrontier. The CE of the firm operating at 𝐿0, 
for example, is computed as the cost at 𝐿2 divided by the cost at 𝐿0. 
The CE of a firm can be broken into the product of a cost-oriented 
metatechnology ratio (CMR) and a measure of residual cost efficiency 
(RCE). The CMR is a cost-oriented measure of how well the firm has 
chosen its technology, while RCE is a cost-oriented measure of how 
well its chosen technology has been used. Assuming the firm operating 
at 𝐿0 has chosen technology 1, for example, then its CMR is computed 
as the cost at 𝐿2 divided by the cost at 𝐿1: its RCE is computed as the 
cost at 𝐿1 divided by the cost at 𝐿0.

Again, it is important to consider the counterfactual case where the 
firm had been able to use technology 1 some of the time and technology 
2 the rest of the time. In this case, the cost metafrontier would have 
been given by the polyline 𝐺2𝐻2𝐼1𝐽1. Consequently, the firm would 
have been able to minimize cost by moving to point 𝐿3. The CE of the 
firm operating at 𝐿0 would then have been computed as the cost at 𝐿3
divided by the cost at 𝐿0. If the firm had chosen technology 1, then 
the CMR would have been computed as the cost at 𝐿3 divided by the 
cost at 𝐿1. Its RCE would still have been computed as the cost at 𝐿1
divided by the cost at 𝐿0. It follows that incorrectly convexifying the 
cost-output metaset leads to downwardly biased measures of CE and 
the CMR (but not RCE).

This discussion of convexification can be linked to a specific prop-
erty of the cost function that is worth spelling out: if PPSs are convex, 
then cost functions are convex in outputs (see, e.g., some seminal 
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contributions to axiomatic production theory like Jacobsen (1970, 
Proposition 5.2) or Shephard (1970, p. 227)). This empirical property 
of the cost function seems rarely tested. This general property has been 
sharpened by Briec et al. (2004) who establish that (i) cost functions 
estimated on convex PPSs yield lower or equal cost estimates compared 
to cost functions estimated on nonconvex PPSs; and (ii) both types of 
cost functions coincide for the single output and constant returns to 
scale case. Obviously, similar properties exist for the revenue function 
and the profit function: except for the long-run profit function, all other 
dual specifications are affected by the convexity or not of the PPS.

If the production metafrontier is nonconvex, which is normally the 
case, then the cost metafrontier is generally nonconvex in outputs (see 
Fig.  1(b)). To the best of our knowledge, there are only two articles 
that estimate a cost metafrontier (or similar dual function) without 
using a convexification strategy: Campos-Alba et al. (2020) and Pérez-
López et al. (2016) estimate a cost metafrontier under the assumption 
that neither the group cost frontiers nor the cost metafrontier are 
convex.7 Instead, most researchers adopt a convexification strategy. For 
example, Bos and Schmiedel (2007) estimate cost metafrontiers using 
parametric estimators and a convexification strategy, while Huang 
et al. (2015) estimate cost metafrontiers (or similar dual functions) 
using nonparametric estimators and a convexification strategy. None 
of these authors test the validity of their convexification strategy. A 
benign interpretation of this state of affairs is that most authors seem 
to believe that using a convexification strategy when estimating a 
cost metafrontier is innocuous and does not lead to any bias. This 
explains the title of our contribution: we are interested in whether the 
convexification strategy leads to biased estimates of the true nonconvex 
cost metafrontier and associated measures of efficiency.

3. Production metafrontiers and cost metafrontiers: Mathematical 
analysis

We begin our formal mathematical treatment of the metafrontier 
methodology by introducing some useful basic mathematical notions 
and notation.

3.1. Mathematical preliminaries

Let 𝑚𝐴 ∈ R̄ = R ∪ {−∞,+∞} denote the infimum of a set 𝐴 ⊆ R. 
Note that 𝑚𝐴 = −∞ if the set 𝐴 is unbounded to the left, and 𝑚𝐴 = +∞
if 𝐴 is empty or unbounded to the right. We then have the following 
proposition.

Proposition 3.1.  Consider a real-valued function 𝑓 ∶ R𝑛 → R with 𝑛 ∈ N
variables. Let 𝐴 and 𝐵 be subsets of dom(𝑓 ). Let 𝑚𝐴, 𝑚𝐵 and 𝑚𝐴𝐵 denote 
the infimum of {𝑓 (𝑥) ∣ 𝑥 ∈ 𝐴}, {𝑓 (𝑥) ∣ 𝑥 ∈ 𝐵} and {𝑓 (𝑥) ∣ 𝑥 ∈ 𝐴 ∪ 𝐵}, 
respectively. Then, the following holds true:
(a) If 𝐴 ⊆ 𝐵, then 𝑚𝐴 ≥ 𝑚𝐵 ;
(b) 𝑚𝐴𝐵 = min{𝑚𝐴, 𝑚𝐵}.

This proposition is common knowledge: thus, we omit its proof. 
Proposition  3.1 states that if set 𝐴 is a subset of set 𝐵, then the infimum 
of a real-valued function over set 𝐵 is smaller than the infimum of that 
same real-valued function over set 𝐴. The infimum of a real-valued 
function over the union of two sets is the minimum of the respective 
infima of this real-valued function over both sets separately.

7 Obviously, as mentioned above, also some contributions using a long-run 
profit function approach when estimating a metafrontier do not introduce any 
bias, since the effect of nonconvexity of the PPS is logically indistinguishable.
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3.2. Technologies and cost frontiers

Technologies can be represented by technology-specific PPSs. The 
𝑔th technology-specific production possibilities set (TPPS), for example, 
is the set containing all input–output combinations that are possible 
using technology 𝑔. Denote the number of inputs and outputs by 𝑀 ∈ N
and 𝑁 ∈ N, respectively, and denote by 𝑥 ∈ R𝑀

+  and 𝑦 ∈ R𝑁
+  the vectors 

of inputs and outputs, respectively. Mathematically, the 𝑔th TPPS is: 
𝑡𝑔 = {(𝑥, 𝑦) ∈ R𝑀

+ × R𝑁
+ ∣ 𝑥 with technology 𝑔 can produce 𝑦}. (1)

Loosely speaking, the boundary of this set is the 𝑔th technology-specific 
production frontier. In the literature, it is also common to refer to this 
boundary as the 𝑔th group frontier.

It is common to make one or more of the following assumptions 
regarding the TPPS defined by (1):

(T.1) (𝑥,0) ∈ 𝑡𝑔 for all 𝑥 ∈ R𝑀
+ .

(T.2) If (0, 𝑦) ∈ 𝑡𝑔 , then 𝑦 = 0.
(T.3) 𝑡𝑔 is a closed subset of R𝑀

+ × R𝑁
+ .

(T.4) If (𝑥, 𝑦) ∈ 𝑡𝑔 and (𝑥′,−𝑦′) ≥ (𝑥,−𝑦), then (𝑥′, 𝑦′) ∈ 𝑡𝑔 .
(T.5) 𝑡𝑔 is a convex set.
(T.6) If (𝑥, 𝑦) ∈ 𝑡𝑔 , then 𝛿(𝑥, 𝑦) ∈ 𝑡𝑔 for all 𝛿 ≥ 0.

In words, these assumptions state that: (i) inactivity is possible, 
(ii) there is no free lunch, (iii) the set of feasible input–output com-
binations contains all the points on its boundary (closedness), (iv) 
inputs and outputs are freely (or strongly) disposable, (v) the TPPS 
is convex, and (vi) the technology-specific production frontier exhibits 
constant returns to scale. For more details on these assumptions see, 
for example, O’Donnell (2018, p. 55–63).

Under weak regularity conditions, technologies can be represented 
by technology-specific cost functions. The 𝑔th technology-specific cost 
function (TCF), for example, gives the minimum cost of producing a 
given output vector when using technology 𝑔 and facing given input 
prices. Mathematically, this leads to the following definition:

Definition 3.1.  The TCF that gives the minimum cost of producing 
𝑦 ∈ R𝑁

+  when using technology 𝑔 and facing prices 𝑤 ∈ R𝑀
+  is defined 

as 𝑐𝑔 ∶ R𝑁
+ × R𝑀

+ → R+ ∶ (𝑦,𝑤) ↦ 𝑐𝑔(𝑦,𝑤) = inf{𝑤′𝑥 ∣ (𝑥, 𝑦) ∈ 𝑡𝑔}.

With this definition we can now state the following proposition.

Proposition 3.2.  Consider two technologies 𝑔 and ℎ, a given output 
level 𝑦 ∈ R𝑁

+  and a vector of input prices 𝑤 ∈ R𝑀
+ . If 𝑡𝑔 ⊆ 𝑡ℎ, then 

𝑐𝑔(𝑦,𝑤) ≥ 𝑐ℎ(𝑦,𝑤).

The proof of this proposition and all other propositions is found in 
Appendix A. Thus, the cost function representing a smaller PPS always 
takes a value that is greater than or equal to the value taken by a cost 
function representing a larger PPS.

3.3. Metatechnologies and cost metafrontiers

The set of technologies that exist in a given period is sometimes 
referred to as a technology set (e.g. O’Donnell, 2018, p. 87). In the 
metafrontier literature, technology sets are more often referred to as 
metatechnologies. Metatechnologies can be represented by
metatechnology-specific production possibilities sets. The
metatechnology-specific production possibilities set (MPPS), for exam-
ple, is the set containing all input–output combinations that are possible 
using the metatechnology (i.e., using the technologies that exist in a 
given period).

To formalize these ideas, let 𝛤 = {1,… , 𝑃 } denote the set of 𝑃 ∈ N
technologies that exist in a given period. Then 𝛤  can be represented by 
𝑇 =

⋃𝑃
𝑔=1 𝑡

𝑔 =
⋃

𝑔∈𝛤 𝑡𝑔 . Using the definition of the union operator, note 
that this MPPS can also be defined as 

𝑇 = {(𝑥, 𝑦) ∈ R𝑀 × R𝑁 ∣ ∃𝑔 ∈ 𝛤 ∶ 𝑥 and technology 𝑔 can produce 𝑦}.
+ +
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(2)

This metaset inherits many of its properties from the properties of 
the TPPSs. This is explicit in the following proposition.

Proposition 3.3.  Consider the metatechnology 𝛤 . If 𝑡𝑔 satisfies assump-
tion (T.𝑛), with 𝑛 ∈ {1,2,3,4,6}, for all 𝑔 ∈ 𝛤 , then 𝑇  also satisfies 
(T.𝑛).

Remark 3.1.  If 𝑡𝑔 satisfies convexity (i.e., (T.5)) for all 𝑔 ∈ 𝛤 , then 𝑇
does not necessarily satisfy assumption (T.5). This statement is easily 
illustrated in Fig.  1(a).

It is common to represent metatechnologies using metatechnology-
specific cost functions. The metatechnology-specific cost function
(MCF), for example, gives the minimum cost of producing a given 
output vector when using the metatechnology and facing given input 
prices. Mathematically, this leads to the following definition:

Definition 3.2.  The MCF that gives the minimum cost of producing 
𝑦 ∈ R𝑁

+  when using the metatechnology and facing input prices 𝑤 ∈ R𝑀
+

is defined as 𝐶 ∶ R𝑁
+ × R𝑀

+ → R+ ∶ (𝑦,𝑤) ↦ 𝐶(𝑦,𝑤) = inf{𝑤′𝑥 ∣ (𝑥, 𝑦) ∈
𝑇 }.

While Definition  3.2 assumes fixed input prices 𝑤 for theoreti-
cal derivation, empirical estimation incorporates heterogeneous input 
prices to better capture the realities of firm-level cost variations. We 
therefore have the following remark for the empirical applications. 

Remark 3.2.  If firm 𝑖 faces heterogeneous input prices 𝑤𝑖 ∈ R𝑀
+ , the 

MCF that gives the minimum cost of producing 𝑦𝑖 ∈ R𝑁
+  when using 

the metatechnology is defined as 𝐶 ∶ R𝑁
+ × R𝑀

+ → R+ ∶ (𝑦𝑖, 𝑤𝑖) ↦

𝐶(𝑦𝑖, 𝑤𝑖) = inf{𝑤′
𝑖𝑥 ∣ (𝑥, 𝑦𝑖) ∈ 𝑇 }.

The MCF satisfies the following relations. 

Proposition 3.4.  Consider the metatechnology 𝛤 , a given output level 
𝑦 ∈ R𝑁

+  and a vector of input prices 𝑤 ∈ R𝑀
+ .

(a) ∀𝑔 ∈ 𝛤 ∶ 𝑐𝑔(𝑦,𝑤) ≥ 𝐶(𝑦,𝑤);
(b) 𝐶(𝑦,𝑤) = min{𝑐𝑔(𝑦,𝑤) ∣ 𝑔 ∈ 𝛤 }.

Part (a) of this proposition says that the value of every TCF is larger 
than or equal to the value of the MCF: this is because every TPPS is 
contained in the MPPS. Part (b) of this proposition says that in order 
to determine the value of the MCF it suffices to get the minimum of all 
available TCFs.

Note that, similar to distance functions (see Kerstens et al., 2019), 
TCFs and MCFs are not always well-defined (in the sense of resulting 
in a finite value). To illustrate this, consider the firm operating at point 
𝐼1 in Fig.  1(b). It is not possible to produce output 𝑦4 using technology 
2, so 𝑐2(𝑦4, 𝑤) = +∞. Note that even though the technology-2 cost 
function is not well-defined, the MCF is still well-defined: as a result 
of Proposition  3.4(b), 𝐶(𝑦4, 𝑤) = min{𝑐1(𝑦4, 𝑤),+∞} = 𝑐1(𝑦4, 𝑤).

Proposition  3.4(b) also implies that the MCF need not be convex in 
outputs. Again, Fig.  1(b) can be used to illustrate. Consider the output 
level 𝑦3 of observation 𝐾. Since this output level is located between 
the output levels 𝑦1 and 𝑦4 of observations 𝐻2 and 𝐼1, respectively, 
there exists some 𝛼 ∈ (0,1) such that 𝑦3 = 𝛼𝑦1 + (1− 𝛼)𝑦4. According to 
Proposition  3.4(b), 𝐶(𝑦3, 𝑤) = min{𝑐1(𝑦3, 𝑤), 𝑐2(𝑦3, 𝑤)} = 𝑐1(𝑦3, 𝑤) =
𝑐2(𝑦3, 𝑤). It is easy to show that this value is larger than the value 
𝛼𝐶(𝑦1, 𝑤) + (1− 𝛼)𝐶(𝑦4, 𝑤) = 𝛼𝑐2(𝑦1, 𝑤) + (1− 𝛼)𝑐1(𝑦4, 𝑤). By definition, 
this illustrates the nonconvexity of the MCF in this example.

Finally, recall from Section 2 that the CE of a firm can be decom-
posed into the product of a CMR and a measure of RCE. Mathematically, 
the CE of a firm that faces input prices 𝑤 and uses inputs 𝑥 to produce 
outputs 𝑦 is CE(𝑥, 𝑦,𝑤) = 𝐶(𝑦,𝑤)∕𝑤′𝑥. If a firm uses technology 𝑔, then 
its CMR and RCE are CMR𝑔(𝑦,𝑤) = 𝐶(𝑦,𝑤)∕𝑐𝑔(𝑦,𝑤) and RCE𝑔(𝑥, 𝑦,𝑤) =
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𝑐𝑔(𝑦,𝑤)∕𝑤′𝑥. Since 𝑤′𝑥 ≥ 𝑐𝑔(𝑦,𝑤) ≥ 𝐶(𝑦,𝑤), it is obvious that all 
three measures lie in the closed unit interval. Moreover, we have the 
following decomposition: 
CE(𝑥, 𝑦,𝑤) = CMR𝑔(𝑦,𝑤) ⋅ RCE𝑔(𝑥, 𝑦,𝑤). (3)

This implies RCE𝑔(𝑥, 𝑦,𝑤) = CE(𝑥, 𝑦,𝑤)∕ CMR𝑔(𝑦,𝑤). Thus, RCE can 
be viewed as the component of cost efficiency that remains after 
accounting for the CMR (hence the term ‘residual’). Related cost-
oriented measures of performance are found elsewhere in the literature: 
e.g., our CMR is the reciprocal of the ‘cost gap ratio’ defined by Huang 
et al. (2015, p. 325). Those same authors also exploit the traditional 
distinction between technical and allocative efficiencies to decompose 
their equivalent of RCE. Note furthermore that the convexification 
strategy consisting in convexifying the metatechnology when comput-
ing the cost function affects the whole decomposition (3), except for 
the component RCE𝑔(𝑥, 𝑦,𝑤).

4. Nonparametric frontier estimators

In the next two subsections, we examine the consequences of con-
vexification for well-known nonparametric estimators of nonconvex 
and convex PPSs and associated cost functions. Suppose we have 𝑛 ∈
N observed input–output combinations with which to estimate the 
MPPS. We introduce the following notation. The observed input–output 
combinations used to estimate the MPPS are denoted (𝑥1, 𝑦1), . . . , 
(𝑥𝑛, 𝑦𝑛) ∈ R𝑀

+ × R𝑁
+ . The nonparametric estimator of the 𝑔th TPPS 

only uses 𝑛𝑔 ≤ 𝑛 of these observations. To identify these particular 
observations, consider the one-to-one index function 𝜙𝑔 ∶ {1,… , 𝑛𝑔} →
{1,… , 𝑛}. Then, (𝑥𝜙𝑔 (𝑖), 𝑦𝜙𝑔 (𝑖)) denotes the 𝑖th observation in the set of 
observations used to estimate the 𝑔th TPPS. For example, consider the 
case where the nonparametric estimator of the 𝑔th TPPS only uses the 
four observations (𝑥2, 𝑦2), (𝑥4, 𝑦4), (𝑥5, 𝑦5) and (𝑥7, 𝑦7). Then, 𝑛𝑔 = 4 and 
𝜙𝑔 ∶ {1,2,3,4} → {1,… , 𝑛} with 𝜙𝑔(1) = 2, 𝜙𝑔(2) = 4, 𝜙𝑔(3) = 5 and 
𝜙𝑔(4) = 7.

4.1. Nonconvex PPSs and related cost functions

We begin by considering the estimation of nonconvex PPSs under 
the assumption of either variable or constant returns to scale. First, 
if all TPPSs are nonconvex (NC) and their corresponding frontiers 
exhibit variable returns to scale (VRS), then an asymptotically unbiased 
estimator of the 𝑔th TPPS is:

𝑡𝑔𝑁𝐶,𝑉 𝑅𝑆 =
{

(𝑥, 𝑦) ∈ R𝑀
+ × R𝑁

+ ∣
𝑛𝑔
∑

𝑖=1
𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,

𝑛𝑔
∑

𝑖=1
𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦,

𝑛𝑔
∑

𝑖=1
𝜆𝜙𝑔 (𝑖) = 1, 𝜆𝜙𝑔 (𝑖) ∈ {0,1}

}

. (4)

Importantly, the constraints ∑𝑛𝑔
𝑖=1 𝜆𝜙𝑔 (𝑖) = 1 and 𝜆𝜙𝑔 (𝑖) ∈ {0,1} ensure 

that only one activity vector 𝜆𝜙𝑔 (𝑖) is nonzero (and equal to one); 
except in restrictive special cases, this means that the estimated TPPS 
is nonconvex. The estimator defined by (4) is commonly known as a 
free disposal hull (FDH) estimator. The associated FDH estimator of the 
MPPS is: 𝑇𝑁𝐶,𝑉 𝑅𝑆 =

⋃

𝑔∈𝛤 𝑡𝑔𝑁𝐶,𝑉 𝑅𝑆 .
8

Second, if all TPPSs are NC and their corresponding frontiers ex-
hibit constant returns to scale (CRS), then an asymptotically unbiased 
estimator of the 𝑔th TPPS is:

𝑡𝑔𝑁𝐶,𝐶𝑅𝑆 =
{

(𝑥, 𝑦) ∈ R𝑀
+ × R𝑁

+ ∣
𝑛𝑔
∑

𝑖=1
𝛿𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,

𝑛𝑔
∑

𝑖=1
𝛿𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦,

𝑛𝑔
∑

𝑖=1
𝜆𝜙𝑔 (𝑖) = 1, 𝜆𝜙𝑔 (𝑖) ∈ {0,1}, 𝛿 ≥ 0

}

. (5)

8 Campos-Alba et al. (2020) and Pérez-López et al. (2016) consider a robust 
version of this estimator that allows for outliers.
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Observe that this estimator includes a scaling parameter 𝛿; this param-
eter allows for an unlimited scaling of all 𝑛𝑔 observations determining 
the TPPS so as to embody the assumption of CRS. The associated 
estimator of the MPPS is 𝑇𝑁𝐶,𝐶𝑅𝑆 =

⋃

𝑔∈𝛤 𝑡𝑔𝑁𝐶,𝐶𝑅𝑆 .
Definitions  3.1 and 3.2 can now be used to motivate FDH estimators 

of TCFs and MCFs. An overview is given in the following definition.

Definition 4.1.  For the metatechnology 𝛤 , some output level 𝑦 ∈ R𝑁
+

and a given vector of input prices 𝑤 ∈ R𝑀
+ , the following estimators 

can be introduced:
(a) If all TPPSs are NC and their corresponding frontiers exhibit VRS, 

then an asymptotically unbiased estimator of:

(i) the 𝑔th TCF is 𝑐𝑔𝑁𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) = inf{𝑤′𝑥 ∣ (𝑥, 𝑦) ∈ 𝑡𝑔𝑁𝐶,𝑉 𝑅𝑆};
(ii) the MCF is 𝐶𝑁𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) = inf{𝑤′𝑥 ∣ (𝑥, 𝑦) ∈ 𝑇𝑁𝐶,𝑉 𝑅𝑆}.

(b) If all TPPSs are NC and their corresponding frontiers exhibit CRS, 
then an asymptotically unbiased estimator of:

(i) the 𝑔th TCF is 𝑐𝑔𝑁𝐶,𝐶𝑅𝑆 (𝑦,𝑤) = inf{𝑤′𝑥 ∣ (𝑥, 𝑦) ∈ 𝑡𝑔𝑁𝐶,𝐶𝑅𝑆};
(ii) the MCF is 𝐶𝑁𝐶,𝐶𝑅𝑆 (𝑦,𝑤) = inf{𝑤′𝑥 ∣ (𝑥, 𝑦) ∈ 𝑇𝑁𝐶,𝐶𝑅𝑆}.

Relations between several of these estimators are summarized in the 
following proposition.

Proposition 4.1.  Consider the metatechnology 𝛤 , some output level 
𝑦 ∈ R𝑁

+  and a given vector of input prices 𝑤 ∈ R𝑀
+ . Then the following 

relations hold true for all 𝑔 ∈ 𝛤 :

(a) 𝑐𝑔𝑁𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) ≥ 𝐶𝑁𝐶,𝑉 𝑅𝑆 (𝑦,𝑤), 𝑐𝑔𝑁𝐶,𝐶𝑅𝑆 (𝑦,𝑤) ≥ 𝐶𝑁𝐶,𝐶𝑅𝑆 (𝑦,𝑤);

(b) 𝑐𝑔𝑁𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) ≥ 𝑐𝑔𝑁𝐶,𝐶𝑅𝑆 (𝑦,𝑤), 𝐶𝑁𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) ≥ 𝐶𝑁𝐶,𝐶𝑅𝑆 (𝑦,𝑤); 
(c) 𝐶𝑁𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) = min{𝑐𝑔𝑁𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) ∣ 𝑔 ∈ 𝛤 }; 
(d) 𝐶𝑁𝐶,𝐶𝑅𝑆 (𝑦,𝑤) = min{𝑐𝑔𝑁𝐶,𝐶𝑅𝑆 (𝑦,𝑤) ∣ 𝑔 ∈ 𝛤 };

(e)

𝑐𝑔𝑁𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) = min
{

𝑤′𝑥 ∣
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦,
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖) = 1, 𝜆𝜙𝑔 (𝑖) ∈ {0,1}
}

;

(f)
𝑐𝑔𝑁𝐶,𝐶𝑅𝑆 (𝑦,𝑤) = min

{

𝑤′𝑥 ∣
∑𝑛𝑔

𝑖=1 𝛿𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,
∑𝑛𝑔

𝑖=1 𝛿𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦,
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖) = 1, 𝜆𝜙𝑔 (𝑖) ∈ {0,1}, 𝛿 ≥ 0
}

;

(g)
𝐶𝑁𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) = min

{

𝑤′𝑥 ∣
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦,
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖) = 1, 𝜆𝜙𝑔 (𝑖) ∈ {0,1}
}

;

(h)
𝐶𝑁𝐶,𝐶𝑅𝑆 (𝑦,𝑤) = min

{

𝑤′𝑥 ∣
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝛿𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝛿𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦,
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖) = 1, 𝜆𝜙𝑔 (𝑖) ∈ {0,1}, 𝛿 ≥ 0
}

.

Part (𝑎) of this proposition says that estimated TCFs always take 
values that are larger than or equal to the values taken by estimated 
MCFs, while part (𝑏) simply reminds us that cost functions estimated 
under a VRS assumption always take values that are larger than or 
equal to the values taken by cost functions estimated under a CRS 
assumption. Parts (𝑐) and (𝑑) say that, irrespective of the returns to 
scale assumption, the estimated values of MCFs can be computed as 
the minima of the estimated values of the relevant TCFs. Parts (𝑒)
and (𝑓 ) define the estimated TCFs under the assumptions of VRS and 
CRS. Finally, parts (𝑔) and (ℎ) reveal that MCF is estimated using all 
observations associated with all the technologies available in a given 
period.
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Finally, Proposition  4.1 reveals that estimating cost functions as-
sociated with nonconvex PPSs involves solving various linear and 
nonlinear binary mixed integer programs. For details of alternative so-
lution strategies,including the fastest implicit enumeration algorithms 
over all observations 𝑛: see Kerstens and Van de Woestyne (2014).

4.2. Convex PPSs and related cost functions

We now consider the estimation of convex PPSs under the assump-
tion of either VRS or CRS. First, if all TPPSs are convex and their 
corresponding frontiers exhibit VRS, then an asymptotically unbiased 
estimator of the 𝑔th TPPS is:

𝑡𝑔𝐶,𝑉 𝑅𝑆 =
{

(𝑥, 𝑦) ∈ R𝑀
+ × R𝑁

+ ∣
𝑛𝑔
∑

𝑖=1
𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,

𝑛𝑔
∑

𝑖=1
𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦,

𝑛𝑔
∑

𝑖=1
𝜆𝜙𝑔 (𝑖) = 1, 𝜆𝜙𝑔 (𝑖) ≥ 0

}

. (6)

This estimator is the convexified version of (4). It differs from (4) in 
that the nonnegative activity (or intensity) variables (𝜆𝜙𝑔 (𝑖)) are no 
longer restricted to be binary integers. The estimator defined by (6) 
is commonly known as a data envelopment analysis (DEA) estimator. 
The associated convex estimator of the MPPS is: 𝑇𝐶,𝑉 𝑅𝑆 =

⋃

𝑔∈𝛤 𝑡𝑔𝐶,𝑉 𝑅𝑆 .
Second, if all TPPSs are convex and their corresponding frontiers 

exhibit CRS, then an asymptotically unbiased estimator of the 𝑔th TPPS 
is:

𝑡𝑔𝐶,𝐶𝑅𝑆 =
{

(𝑥, 𝑦) ∈ R𝑀
+ × R𝑁

+ ∣
𝑛𝑔
∑

𝑖=1
𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,

𝑛𝑔
∑

𝑖=1
𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦,

𝜆𝜙𝑔 (𝑖) ≥ 0
}

. (7)

This estimator is the convexified version of (5). Again, it differs from 
(5) in that the nonnegative activity variables are no longer restricted to 
be binary integers. Note that an additional transformation (i.e., rewrite 
𝛿𝜆𝜙𝑔 (𝑖) in (5) as 𝜆′𝜙𝑔 (𝑖) and rename as 𝜆𝜙𝑔 (𝑖)) is needed to obtain the 
exact result in (7). The associated convex estimator of the MPPS is 
𝑇𝐶,𝐶𝑅𝑆 =

⋃

𝑔∈𝛤 𝑡𝑔𝐶,𝐶𝑅𝑆 .
Definitions  3.1 and 3.2 can now be used to motivate convex es-

timators of TCFs and MCFs. An overview is given in the following 
definition.

Definition 4.2.  For the metatechnology 𝛤 , some output level 𝑦 ∈ R𝑁
+

and a given vector of input prices 𝑤 ∈ R𝑀
+ , the following estimators 

can be introduced:
(a) If all TPPSs are convex and their corresponding frontiers exhibit 

VRS, then an asymptotically unbiased estimator of:

(i) the 𝑔th TCF is 𝑐𝑔𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) = inf{𝑤′𝑥 ∣ (𝑥, 𝑦) ∈ 𝑡𝑔𝐶,𝑉 𝑅𝑆};
(ii) the MCF is 𝐶𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) = inf{𝑤′𝑥 ∣ (𝑥, 𝑦) ∈ 𝑇𝐶,𝑉 𝑅𝑆}.

(b) If all TPPSs are convex and their corresponding frontiers exhibit 
CRS, then an asymptotically unbiased estimator of:

(i) the 𝑔th TCF is 𝑐𝑔𝐶,𝐶𝑅𝑆 (𝑦,𝑤) = inf{𝑤′𝑥 ∣ (𝑥, 𝑦) ∈ 𝑡𝑔𝐶,𝐶𝑅𝑆};
(ii) the MCF is 𝐶𝐶,𝐶𝑅𝑆 (𝑦,𝑤) = inf{𝑤′𝑥 ∣ (𝑥, 𝑦) ∈ 𝑇𝐶,𝐶𝑅𝑆}.

Relations between several of these estimators are summarized in the 
following proposition.

Proposition 4.2.  Consider the metatechnology 𝛤 , some output level 
𝑦 ∈ R𝑁

+  and a given vector of input prices 𝑤 ∈ R𝑀
+ . Then the following 

relations hold true for all 𝑔 ∈ 𝛤 :

(a) 𝑐𝑔 (𝑦,𝑤) ≥ 𝐶𝐶,𝑉 𝑅𝑆 (𝑦,𝑤), 𝑐𝑔 (𝑦,𝑤) ≥ 𝐶𝐶,𝐶𝑅𝑆 (𝑦,𝑤);
𝐶,𝑉 𝑅𝑆 𝐶,𝐶𝑅𝑆
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(b) 𝑐𝑔𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) ≥ 𝑐𝑔𝐶,𝐶𝑅𝑆 (𝑦,𝑤), 𝐶𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) ≥ 𝐶𝐶,𝐶𝑅𝑆 (𝑦,𝑤);

(c) 𝐶𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) = min{𝑐𝑔𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) ∣ 𝑔 ∈ 𝛤 };

(d) 𝐶𝐶,𝐶𝑅𝑆 (𝑦,𝑤) = min{𝑐𝑔𝐶,𝐶𝑅𝑆 (𝑦,𝑤) ∣ 𝑔 ∈ 𝛤 }; 

(e)
𝑐𝑔𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) = min

{

𝑤′𝑥 ∣
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖) = 1, 𝜆𝜙𝑔 (𝑖) ≥ 0
}

;

(f)
𝑐𝑔𝐶,𝐶𝑅𝑆 (𝑦,𝑤) = min

{

𝑤′𝑥 ∣
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦,

𝜆𝜙𝑔 (𝑖) ≥ 0
}

;

(g)
𝐶𝐶,𝑉 𝑅𝑆 (𝑦,𝑤) ≥ min

{

𝑤′𝑥 ∣
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦,
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖) = 1, 𝜆𝜙𝑔 (𝑖) ≥ 0
}

;

(h)
𝐶𝐶,𝐶𝑅𝑆 (𝑦,𝑤) ≥ min

{

𝑤′𝑥 ∣
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦, 𝜆𝜙𝑔 (𝑖) ≥ 0
}

.

(i) If 𝑁 = 1, (i.e., only one output is produced), then
𝐶𝐶,𝐶𝑅𝑆 (𝑦,𝑤) = min

{

𝑤′𝑥 ∣
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑥𝜙𝑔 (𝑖) ≤ 𝑥,
∑

𝑔∈𝛤
∑𝑛𝑔

𝑖=1 𝜆𝜙𝑔 (𝑖)𝑦𝜙𝑔 (𝑖) ≥ 𝑦, 𝜆𝜙𝑔 (𝑖) ≥ 0
}

.

Note that Propositions  4.1 and 4.2 are rather similar. However, 
important differences can be observed when comparing parts (𝑔) and 
(ℎ). The equality observed in the nonconvex case is now replaced by an 
inequality in the convex case. These results are similar to the ones in 
Proposition 5.5 in Kerstens et al. (2019). We stress that equality is not 
true in general unless CRS is assumed and only one output is produced 
(i.e., result (𝑖) of Proposition  4.2). Also note that the cost functions on 
the right-hand sides of (𝑔) and (ℎ) of Proposition  4.2 correspond with 
those of the convexified MPPSs. Hence, costs computed by incorrectly 
convexifying a MPPS systematically underestimate true costs.

Finally, Proposition  4.2 reveals that estimating cost functions asso-
ciated with convex production possibilities sets involves solving linear 
programming problems for each evaluated observation, as discussed 
in the mainstream efficiency literature (e.g., see O’Donnell (2018, p. 
226)). This implies that metatechnology specific cost functions in the 
convex case can only be computed via a sequence of linear programs 
using Proposition  3.4(b), while the nonconvex counterparts only ne-
cessitate computing simple implicit enumeration algorithms over all 
observations 𝑛. It remains an open question whether in the convex case 
a single linear program can be found to do the job.

5. Empirical illustration

In this section we use original banking data from China (CN) and the 
United States (USA) to illustrate the potential effects of a convexifica-
tion strategy on estimates of cost metafrontiers and associated measures 
of efficiency.

5.1. Data set: Banks from China and the United States

We retrieve the banking data for CN and the USA in 2019 from the 
BankScope database. Our sample comprises the largest banks encom-
passing 124 banks from CN and 153 banks from the USA. Following 
the intermediation approach, we assume that banks use three inputs to 
produce three outputs. The three inputs are deposits (𝑥1), labor (𝑥2), 
and physical capital (𝑥3). Their respective input prices are determined 
by the ratio of input expenses to the corresponding inputs, denoted 
as 𝑤1, 𝑤2, and 𝑤3, respectively.9 The three outputs are loans (𝑦1), 

9 Since the number of employees is unavailable for many banks in our 
sample, we adopt the approach of Beccalli et al. (2015), where the ratio of 
labor expenses to total assets is used as a proxy for labor price and total assets 
as a proxy for labor.
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Table 1
Summary statistics for the CN and USA banks.
 Variable Minimum Q1 Median Mean Q3 Maximum

 124 CN banks
 𝑦1 42.937 9289.814 15750.933 124116.189 36659.041 2405188.184 
 𝑦2 48.148 3090.382 6626.673 50094.086 16053.784 1057053.375 
 𝑦3 0.000 1596.715 4251.240 32476.381 10643.788 441649.774 
 𝑥1 92.804 15013.189 29290.715 196198.100 72066.293 3701724.024 
 𝑥2 330.115 17606.624 33176.844 228003.751 80235.759 4309351.040 
 𝑥3 0.514 69.544 168.420 1665.048 497.133 41013.453 
 𝑤1 0.010 0.022 0.026 0.026 0.029 0.042 
 𝑤2 0.002 0.004 0.005 0.005 0.006 0.020 
 𝑤3 0.205 0.456 0.634 1.804 1.097 18.556 
 153 USA banks
 𝑦1 1126.664 4458.623 9671.747 47214.852 23271.356 969829.000 
 𝑦2 150.996 1180.880 2785.468 27034.831 7563.811 1084769.000 
 𝑦3 18.614 1827.726 3755.381 45562.285 11889.265 1174417.000 
 𝑥1 2839.178 5240.233 11574.706 69351.504 28975.669 1776586.000 
 𝑥2 3614.957 6173.877 13495.944 85878.343 34105.305 2337646.000 
 𝑥3 0.007 67.134 149.366 813.153 340.515 22432.000 
 𝑤1 0.000 0.007 0.010 0.011 0.013 0.036 
 𝑤2 0.000 0.010 0.012 0.013 0.014 0.050 
 𝑤3 0.214 0.599 0.815 13919.060 1.299 2128807.000 
securities (𝑦2), and off-balance items (𝑦3). Table  1 summarizes the 
descriptive statistics for the inputs, the outputs and the input prices for 
both CN and USA banks. All monetary values are reported in constant 
million USA dollars.

Table  1 indicates that CN banks tend to be larger than USA banks, 
with both median and mean values of loans and deposits surpassing 
those of USA banks. Nonetheless, USA banks typically have a greater 
amount of off-balance sheet items. As a result, there is significant het-
erogeneity between CN and USA banks. In this illustration, it is rational 
to assume that the banks in CN and USA have different technolo-
gies. The differences between CN and USA banks can be multifaceted 
and can include variations in market structures, management prac-
tices, technological advancement, economic conditions, and regulatory 
frameworks. By definition, our metatechnology is 𝛤 = {1,2}.

The traditional economic understanding of the bank’s production 
makes us believe that it may be possible for the manager of a given 
bank to use a given input vector to produce a given level of output 
for some time within the production period, and then use a different 
input vector to produce a different level of output for the rest of 
the time. This suggests that each TPPS may be convex. Consequently, 
we begin by estimating convex TPPSs and associated TCFs using a 
nonparametric convex estimator. Given the different types of regulatory 
frameworks and market structures involved in the production, it is also 
our understanding that the manager of a given bank cannot normally 
generate the outputs by using convex combinations of technologies in 
CN and USA. This suggests that the MPPS should not be convexified. 
It is now an open question to check how a convexification strategy of 
the MPPS approximates the true nonconvex MPPS. We are particularly 
interested in the effects of the convexification strategy on estimates of 
efficiency.

It is widely assumed in the banking literature that the bank’s 
production process in general is characterized by convex PPSs, and 
that the boundaries of those sets are linear. However, recently several 
contributions have tested and rejected the convexity of the PPS for 
banks (see, e.g., Wilson and Zhao (2023) for CN banks and Wilson 
(2021) for USA banks). If PPSs are nonconvex, then there is no reason 
to suppose that cost functions are convex in the outputs. Economists 
who take this seriously would presumably want to estimate TPPSs that 
are not convex. To satisfy the curiosity of these economists, we also 
estimate nonconvex TPPSs and associated TCFs using a nonparametric 
FDH estimator.
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5.2. Empirical results

Descriptive statistics for the estimates of CE(𝑥, 𝑦,𝑤), RCE𝑔(𝑥, 𝑦,𝑤)
and CMR𝑔(𝑦,𝑤) are reported in the columns labeled C-NC and NC-NC in 
Table  2. The acronym C-NC indicates that the TPPSs are convex but the 
MPPS is not, while the acronym NC-NC indicates that neither the TPPSs 
nor the MPPS are convex. All estimates have been obtained under the 
assumptions that production frontiers exhibit VRS. In Table  2, both C-
NC and NC-NC results are reported in two blocks of four columns each, 
where the last column contains the number of infeasible solutions.10 
Turning to the explanation of the rows in Table  2, the first block of 
results contains summary statistics for all 124 + 153 = 277 banks in 
the sample. The next two blocks of numbers report summary statistics 
for the 124 CN banks and the 153 USA banks. The first row in each 
block reports the number of efficient observations (i.e., the number of 
times the relevant performance measure equals 1). The next three rows 
in each block report the geometric averages,11 standard deviations, and 
minima of the relevant estimates.

Several conclusions can be drawn from the results reported in Table 
2. First, by construction, estimates of CE(𝑥, 𝑦,𝑤) obtained using the 
C-NC model can be no higher than those obtained using the NC-NC 
model. This is reflected in both the lower average CE score and the 
smaller number of efficient observations under the C-NC model. The 
estimates of CE(𝑥, 𝑦,𝑤) obtained using the C-NC model are on average 
0.9282 − 0.6587 = 0.2695 lower than those obtained using the NC-
NC model; this translates into a percentage difference of (0.9282 −
0.6587)∕0.9282 = 29.03%.12

Second, also by construction, estimates of RCE𝑔(𝑥, 𝑦,𝑤) obtained 
using the C-NC model can be no higher than estimates obtained using 
the NC-NC model. This again shows up in both the lower average RCE 
score and the smaller number of efficient observations under the C-NC 
model. The estimates of RCE𝑔(𝑥, 𝑦,𝑤) obtained using the C-NC model 
are on average 0.9556 − 0.7297 = 0.2259 lower than those obtained 
using the NC-NC model; this translates into a percentage difference of 
(0.9556 − 0.7297)∕0.9556 = 23.64%.13

10 Briec and Kerstens (2009) discuss on the possibility of infeasibilities for 
general distance functions.
11 The use of geometric averages guarantees that the multiplicative 
decomposition in (3) holds exactly.
12 Taking the ratio of the CE estimates nets out the observed cost and 
reveals the difference in the estimated value of the MCF under convexity and 
nonconvexity.
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Table 2
C-NC and NC-NC Estimates of CE(𝑥, 𝑦,𝑤), RCE𝑔 (𝑥, 𝑦,𝑤) and CMR𝑔 (𝑦,𝑤).
 C-NC NC-NC

 CE(⋅) RCE𝑔 (⋅) CMR𝑔 (⋅) Infeas. CE(⋅) RCE𝑔 (⋅) CMR𝑔 (⋅) Infeas. 
 All 277 # Effic. Obs. 17 31 160 155 194 220  
 Banks Geom. Mean 0.6587 0.7297 0.9027 8 0.9282 0.9556 0.9713 79  
 Stand. Dev. 0.1539 0.1490 0.1264 0.1009 0.0847 0.0633  
 Min. 0.4054 0.4054 0.4517 0.5759 0.5759 0.6381  
 Li-testa 106.393 82.870 105.462  
 𝑝-value (0.000) (0.000) (0.000)  
 124 CN # Effic. Obs. 8 19 22 66 91 87  
 Banks Geom. Mean 0.6397 0.7934 0.8062 4 0.9280 0.9733 0.9535 79  
 Stand. Dev. 0.1646 0.1258 0.1312 0.0925 0.0533 0.0789  
 Min. 0.4301 0.6034 0.4517 0.6381 0.7450 0.6381  
 KSW-test#1a 3.020  
 𝑝-value (0.003)  
 KSW-test#2a 0.852  
 𝑝-value (0.025)  
 153 USA # Effic. Obs. 9 12 138 89 103 133  
 Banks Geom. Mean 0.6745 0.6818 0.9893 4 0.9283 0.9415 0.9860 0  
 Stand. Dev. 0.1437 0.1500 0.0394 0.1075 0.1021 0.0429  
 Min. 0.4054 0.4054 0.7495 0.5759 0.5759 0.6507  
 KSW-test#1a 236.459  
 𝑝-value (0.485)  
 KSW-test#2a 0.766  
 𝑝-value (0.225)  
a Exact 𝑝 values are reported in round brackets underneath.
Third, estimates of CMR𝑔(𝑦,𝑤) obtained using the C-NC model can 
in theory be either higher or lower than those obtained using the 
NC-NC model. Table  2 reveals that in our application estimates of 
CMR𝑔(𝑦,𝑤) obtained using the C-NC model are on average (0.9713 −
0.9027)∕0.9713 = 7.06% lower than estimates obtained using NC-NC 
model. Furthermore, the average value of the CMR𝑔(𝑦,𝑤) estimates 
obtained using the NC-NC (or C-NC) model for the 153 USA banks is 
close to one and also larger than the corresponding estimate for the CN 
banks. This indicates that the USA banks in our sample are cost-superior 
to the CN banks, and that some managers of CN banks may benefit 
by adopting the technology of the USA banks. We are only aware of 
a handful of other studies that use metafrontier methods to determine 
the inferiority or superiority of specific technologies. For instance, Sala-
Garrido et al. (2011) evaluate four wastewater treatment technologies 
and find that one technology dominates all three others.

Fourth, there are 4 instances of infeasible solutions for each sub-
sample of CN and USA banks when computing distances to selected 
technology-specific frontiers using the C-NC model. This represents 
about 3% of the sample. In contrast, for the NC-NC model, there are 
79 instances of infeasible solutions among CN banks, while USA banks 
do not encounter any infeasible solutions at all. This represents about 
28.5% of the sample.

To formally assess the differences in efficiency scores, we employ 
a nonparametric test initially proposed by Li (1996): refinements are 
due to Li et al. (2009), among others. This nonparametric test focuses 
on differences between entire distributions of efficiency scores instead 
of focusing on, for instance, differences in first moments (as, e.g., the 
Wilcoxon signed-rank test). It looks for differences between two kernel-
based estimates of density functions 𝑓 and 𝑔 of a random variable 𝑥. 
The null hypothesis is that the two probability density functions (pdfs) 
are equal: 𝐻0 ∶ 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥. The alternative hypothesis is that 
they are not equal: 𝐻1 ∶ 𝑓 (𝑥) ≠ 𝑔(𝑥) for some 𝑥.14

13 Taking the ratio of the RCE estimates nets out the observed cost and 
reveals the difference in the estimated value of the TCF under convexity and 
nonconvexity.
14 The test is valid for both dependent and independent variables. Observe 
that dependency is a characteristic of frontier estimators: i.e., cost efficiency 
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Results of these Li tests are reported in the first block of Table 
2: we report the values of the Li test, and the exact 𝑝 values are 
reported in round brackets underneath. We reject the null hypothesis 
that estimates of 𝐶𝐸(𝑥, 𝑦,𝑤) obtained using the C-NC model have the 
same distribution as estimates obtained using the NC-NC model: Li test 
statistic takes the value 106.393; and the exact 𝑝-value is 0.000. We 
also reject the null hypothesis that estimates of 𝑅𝐶𝐸𝑔(𝑥, 𝑦,𝑤) obtained 
using the C-NC model have the same distribution as estimates obtained 
using the NC-NC model (𝑝-value = 0.000). Finally, we reject the 
null hypothesis that estimates of 𝐶𝑀𝑅𝑔(𝑦,𝑤) obtained using the C-
NC model have the same distribution as estimates obtained using the 
NC-NC model (𝑝-value = 0.000).

To formally test whether each technology-specific cost function for 
CN and USA banks separately is convex, we extend the convexity test 
proposed by Kneip et al. (2016) and further robustified by Simar and 
Wilson (2020a) for the production function to the cost function. Details 
about the initial and robustified version of the tests as well as some 
sensitivity analysis are found in Appendix B. The null hypothesis is 
that the cost function is convex in the outputs, while the alternative 
hypothesis is that the cost function is nonconvex in the outputs. The 
extension in Appendix B describes two tests, denoted as KSW-test#1 
and KSW-test#2. KSW-test#1 involves computing the average of the 
test statistic across several sample splits. KSW-test#2 entails conducting 
a Kolmogorov–Smirnov test to assess the uniformity of the distribution 
of 𝑝-values across multiple sample splits.

The test results presented in Table  2 show that for the CN banks 
both KSW-test#1 and KSW-test#2 reject the convexity assumption and 
hence the cost function is nonconvex in outputs. By contrast, we cannot 
reject the convexity assumption for USA banks and hence the convexity 
assumption for the cost function seems suitable for USA banks. This 
should make applied researchers think harder about imposing convex-
ity: to the best of our knowledge, the studies by Campos-Alba et al. 
(2020) and Pérez-López et al. (2016) are the only other studies using 
a NC-NC model in this cost metafrontier context (but these authors do 

levels depend on sample size, among others. We opt for the standard Li 
test over an adapted-Li test (Simar & Zelenyuk, 2006) since the statistical 
properties for meta-cost efficiency and the cost-oriented metatechnology ratio 
are not yet available. The R code for the Li-test can be found in the np package.
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Table 3
C-NC and C-C Estimates of CE(𝑥, 𝑦,𝑤) and CMR𝑔 (𝑦,𝑤).
 CE(⋅) CMR𝑔 (⋅)

 C-NC C-C Difference C-NC C-C Difference 
 All 277 # Effic. Obs. 17 10 160 21  
 Banks Arith. Mean 0.6752 0.6099 0.0653 0.9127 0.8288 0.0838  
 Stand. Dev. 0.1539 0.1310 0.0698 0.1264 0.1268 0.0809  
 Min. 0.4054 0.3534 0.0000 0.4517 0.4474 0.0000  
 Li-testa 2.926 65.863  
 𝑝-value (0.004) (0.000)  
 124 CN # Effic. Obs. 8 5 22 8  
 Banks Arith. Mean 0.6582 0.6119 0.0462 0.8170 0.7601 0.0569  
 Stand. Dev. 0.1646 0.1491 0.0507 0.1312 0.1170 0.0598  
 Min. 0.4301 0.4227 0.0000 0.4517 0.4474 0.0000  
 153 USA # Effic. Obs. 9 5 138 13  
 Banks Arith. Mean 0.6889 0.6082 0.0807 0.9901 0.8845 0.1057  
 Stand. Dev. 0.1437 0.1148 0.0789 0.0394 0.1056 0.0890  
 Min. 0.4054 0.3534 0.0000 0.7495 0.5302 0.0000  
a Li test: exact 𝑝 values are reported in round brackets underneath.
not make a comparison with the traditional C-NC model). Kerstens and 
Van de Woestyne (2021) do show that convexity is a disputable axiom 
within a traditional cost function context.

We believe ours is the first study to correctly compute the cost 
function associated with a nonconvex MPPS and compare the results 
obtained when the MPPS is formed as the union of either convex or 
nonconvex TPPSs. A first empirical conclusion is that constructing a 
nonconvex MPPS as the union of nonconvex TPPSs yields estimates 
of minimum cost that are about 29% higher than estimates obtained 
by constructing a nonconvex MPPS from convex TPPSs. These em-
pirical results are in line with other studies that compare standard 
cost functions based on convex and nonconvex PPSs: an example in-
cludes Balaguer-Coll et al. (2007). Therefore, imposing convexity or not 
on TPPSs should be more seriously considered when computing cost 
functions associated with nonconvex MPPSs.

To assess the price of inappropriately convexifying the MPPS when 
computing the cost function, descriptive statistics for the associated 
potentially-affected estimates of CE(𝑥, 𝑦,𝑤) and CMR𝑔(𝑦,𝑤) are re-
ported in the columns labeled C–C in Table  3: the acronym C–C 
indicates that the TPPSs and MPPS have all been convexified when 
computing the cost function. Note that the component RCE𝑔(𝑥, 𝑦,𝑤) is 
not affected by the convexification strategy: therefore, it is not reported 
in Table  3. Most of the column and row labels in Table  3 are self 
explanatory. The columns labeled ‘‘Difference’’ report the differences 
between the C-NC (unbiased) and the C–C (biased) results.

The arithmetic average difference between the C-NC and C–C esti-
mates of CE(𝑥, 𝑦,𝑤) is only 0.6752 − 0.6099 = 0.0653 (less than 0.1), 
while the average difference between the C-NC and C–C estimates of 
CMR𝑔(𝑦,𝑤) is 0.9127 − 0.8288 = 0.0838 (slightly larger, but still less 
than 0.1).15 Furthermore, this average difference between the C-NC and 
C–C estimates is lower for CN banks than for USA banks.

Li tests are once again applied to all 277 banks to test whether 
the two distributions of CE(𝑥, 𝑦,𝑤) estimates are equal and whether 
the two distributions of CMR𝑔(𝑦,𝑤) estimates are equal. We reject the 
null hypothesis that estimates of CE(𝑥, 𝑦,𝑤) obtained using the C-NC 
model have the same distribution as estimates obtained using the C–C 
model (test statistic = 2.926; 𝑝-value = 0.004). Moreover, we also reject 
the null hypothesis that estimates of CMR𝑔(𝑦,𝑤) obtained using the C-
NC model have the same distribution as estimates obtained using the 
C–C model (test statistic = 65.863; 𝑝-value = 0.000). Thus, a second 
empirical conclusion is that both MCF and CMR seem to be affected by a 
convexification strategy. This suggests that the convexification strategy 

15 Since here no decomposition must be preserved, we take arithmetic rather 
than geometric averages.
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used by almost all authors when estimating cost metafrontiers should 
be abandoned.

In terms of policy relevance, the convexification strategy may cause 
policymakers to misinterpret the technological gaps among different 
group of producers. This could lead policymakers to make incorrect 
decisions in attempting to close these gaps. In terms of predictive 
accuracy, Jin et al. (2024) report in a context of anomaly detection 
slightly superior classification results for nonconvex relative to convex 
production models.

6. Conclusions

The seminal article of O’Donnell et al. (2008) considers a production 
possibilities metaset that is defined as the union of several underlying 
group-specific PPSs. The boundary of the metaset is referred to as a pro-
duction metafrontier and the boundaries of the group-specific sets are 
referred to as group frontiers. O’Donnell et al. (2008) suggest estimating 
the metafrontier under the assumption that group-specific PPSs and the 
metaset are convex. Kerstens et al. (2019) develop some key results 
showing that both convex and nonconvex group-specific sets in general 
yield nonconvex metasets. This indicates that the convexification strate-
gies that are commonly used when estimating production metafrontiers 
should not be pursued a priori, but ideally require empirical testing to 
confirm that they are innocuous.

This contribution has focused on the way convexification strategies 
are used in a cost function context: we have argued that production 
possibilities metasets are generally nonconvex, so cost metafrontiers are 
normally nonconvex in outputs. We have developed theoretical results 
for general PPSs and cost functions in this respect, and also for nonpara-
metric specifications of the same sets and functions under a variety of 
assumptions. We have used the data from CN and USA banks in 2019 
to explore the consequences of making incorrect assumptions about the 
convexity or nonconvexity of PPSs and associated cost functions. We 
focused on the consequences of a convexification strategy for estimates 
of cost efficiency (CE) and cost-oriented metatechnology ratios (CMRs). 
We found that estimates of CE and CMRs are sensitive to convexity 
assumptions. Since one counterexample is sufficient to invalidate an hy-
pothesis, the reported results offer a clear case to reject the assumption 
that the convexification strategy suggested by O’Donnell et al. (2008) is 
empirically innocuous when estimating cost functions. Obviously, our 
results carry over immediately to the estimation of revenue functions. 
They also carry over to the estimation of short-run profit functions 
(see Briec et al. (2004) for relevant arguments).

It is now possible to see how our general results concerning sets 
and functions and on nonparametric estimators might be transposed 



K. Kerstens et al. European Journal of Operational Research 328 (2026) 324–335 
to alternative frontier methodologies. First, the transposition to alter-
native nonparametric frontier methods (e.g., conditional convex and 
nonconvex models, convex and nonconvex order-𝑚 models (see Daraio 
& Simar, 2007)) looks straightforward, but remains to be done. Second, 
it should be straightforward to assess the way convexification strategies 
are used in a deterministic parametric frontier context, but this also 
remains to be done. Third, a proper construction of a production 
possibilities metaset using stochastic frontier methods has recently 
been explored by Amsler et al. (2017): again, a transposition to a 
cost function context remains to be developed. Finally, constructing 
nonconvex production possibilities metasets using stochastic nonpara-
metric methodologies seems possible (see, e.g., Afsharian (2017) who 
focuses on the so-called StoNED approach): again, the cost function case 
remains to be developed.

The findings of this study highlight critical implications for poli-
cymakers and managers in industries employing metafrontier studies. 
Convexification in cost metafrontiers can lead to biased efficiency 
estimates, which may misinform decision-making. Policymakers should 
reconsider regulatory frameworks that rely on such estimates to com-
pare firms across different technological environments. Furthermore, 
technology-specific cost functions may well be nonconvex: this will 
ensure more accurate benchmarking. For managers, the results em-
phasize the importance of selecting appropriate frontier estimation 
methods. Firms should be cautious in adopting efficiency scores derived 
from convex models, since these may not reflect actual performance 
gaps. In industries where technological heterogeneity is prevalent, 
decision-makers should leverage nonconvex metafrontier models to 
identify performance gaps. This approach can help firms optimize 
resource allocation, improve competitiveness, and develop targeted 
investment strategies that align with their specific technological and 
market conditions.

To conclude, it is possible to outline further research that would 
be useful to evaluate how the many different metafrontier applications 
discussed in Section 1 are affected by the possibly incorrect assumption 
that the production possibilities metaset as well as the resulting cost 
function is convex. First, we have limited our empirical analysis of cost 
functions to the case where frontiers exhibit VRS: thus, our empirical 
analysis could be easily redone for the case where frontiers exhibit 
CRS. Second, it is useful to replicate our study with other data sets 
from banking and other sectors to see whether convexification creates 
a bias and to assess whether convexity of the group cost functions 
can be rejected. Third, it remains an open question whether metate-
chnology specific cost functions in the convex case can be computed 
via a single linear program. Fourth, developments in this contribution 
can obviously be generalized to the cases of the metatechnology-
specific revenue function and to the case of the metatechnology-specific 
short-run profit function.
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