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ARTICLE INFO ABSTRACT

Keywords: Metafrontier analysis is widely used to account for technological heterogeneity among producers. The approach
Data envelopment analysis involves combining a number of group-specific production possibilities sets to form a production possibilities
Free ?15190531 hull metaset. Even though the union of the group sets normally results in a nonconvex metaset, most authors
Metafrontier

proceed as if this metaset is convex. Kerstens, O’Donnell and Van de Woestyne (2019) obtain new results on
the union operator on sets under various assumptions and empirically illustrate that the popular convexification
strategy is highly questionable. In this paper we transpose their results on the union operator from a production
to a cost context: this is new. We then explore the extent to which convexity of the cost function is corroborated
using a newly developed test. Furthermore, we check to which extent a convexification strategy is tenable
when estimating a cost metafrontier. We use an original banking data set from China and the USA to illustrate
the main issues. We establish that the cost function is not convex in the outputs for China and that the
convexification strategy leads to potentially-biased estimates of the cost metafrontier and associated measures
of efficiency.

Cost function

1. Introduction climate, etc.). Producers often have limited direct control over these

variables.

There is ample evidence that large and persistent differences in
productivity levels exist across businesses (see, e.g., Syverson, 2011).
For instance, in the USA a plant at the 90th percentile of the produc-
tivity distribution makes almost twice as much output with the same
inputs as a plant at the 10th percentile, while in developing countries
like China and India even larger productivity differences are recorded:
plants at the 90th percentile of the productivity distribution make
almost five times as much output given the same inputs as a plant at
the 10th percentile. The question why businesses persistently differ in
their measured productivity levels has attracted much attention and the
causes are manifold (see the survey in Syverson (2011)). There is a wide
consensus that heterogeneity in performance can be due to differences
in the availability of production technologies (i.e., the techniques that
are available for transforming inputs into outputs) and to differences
in production environments (e.g., economic infrastructure, topography,

Since the publication of Nishimizu and Page (1982), there is also
widespread acknowledgment that at least part of this heterogeneity
in productivity may be due to technical inefficiencies (i.e., failure
to make the best use of available production technologies). This has
given an impetus to a large literature in economics and in operations
research investigating a variety of inefficiencies using so-called fron-
tier estimators (see, e.g., Casu et al. (2013) for an example). Within
this frontier-based literature, a variety of alternative proposals have
been put forward to account for heterogeneity in production frontiers.
Some of the most popular methods involve the use of latent class
models (e.g., Orea & Kumbhakar, 2004), the aggregation over groups
or industries (e.g., Mayer & Zelenyuk, 2014), and the use of various
clustering methods (e.g., Triantis et al., 2010), among others. It is our
understanding that no theoretical or empirical review has carefully
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considered how these different methods account for heterogeneity in
frontiers.

This contribution accounts for heterogeneity using a particular fron-
tier estimation method that goes back to Hayami and Ruttan (1970).
Those authors “call the envelope of all known and potentially discover-
able activities a secular or “meta-production function”.” (p. 898). Their
meta-production function gives the maximum output obtainable from
given inputs and a given set of production technologies (i.e., stock of
knowledge). Different firms may choose a different specific technology
from the set of available technologies depending on a variety of circum-
stances (e.g., regulation, relative prices, etc.). Parts of this literature
account for the possibility of inefficiency (e.g., Lau & Yotopoulos,
1989).

These traditional ideas have been formally transposed into a produc-
tion frontier framework by Battese and Rao (2002) and Battese et al.
(2004). O’Donnell et al. (2008) subsequently refined some loose ends
in the methodology and finalized the formal framework for making ef-
ficiency comparisons across groups of firms using both stochastic para-
metric and deterministic nonparametric estimation approaches. Their
seminal article defines a production possibilities metaset as the union
of underlying group-specific production possibilities sets (see O’Donnell
et al. (2008, property R.3, p. 235)). The boundary of this metaset is
referred to as a production metafrontier, and the boundaries of the
group-specific sets are called group-specific production frontiers (or
group frontiers).

In the last decade, metafrontier estimation has become increasingly
popular and has been applied across a variety of sectors. Examples
can be drawn from agriculture (e.g., Chen & Song, 2008), banking
(e.g., Casu et al., 2013), hotels (e.g., Huang et al., 2013), and wastewa-
ter treatment plants (e.g., Sala-Garrido et al., 2011) to name but a few.
The basic metafrontier concept has also been applied in a variety of
ways: one case is the development of cost metafrontiers (e.g., Huang &
Fu, 2013); another example is the computation of productivity indices
relative to metafrontiers (see, e.g., Casu et al. (2013) and Huang et al.
(2015) for a primal and a dual Malmquist index respectively); a final ex-
ample is the development of more elaborate efficiency decompositions
(see Tsekouras et al., 2017).

Group-specific production possibilities sets (PPSs) are often char-
acterized by some standard regularity properties, one of which is
convexity.? This convexity property is normally justified by a time
divisibility argument (e.g., Shephard (1970, p. 15) or O’Donnell (2018,
p. 60)). Importantly, even if group-specific PPSs are convex, the metaset
defined by their union is generally nonconvex (see O’Donnell et al.
(2008, p. 237)). This obvious mathematical fact is largely ignored in the
productivity and efficiency literature. In the seminal article by O’Don-
nell et al. (2008), for example, the authors adopt a convexification
strategy insofar as they estimate the production metafrontier as the
boundary of a convex metaset (O’Donnell et al. (2008, p. 239), but see
also, e.g., Battese and Rao (2002) and Battese et al. (2004)). A convex-
ification strategy refers to the methodological approach of assuming
convexity in a production or cost metafrontier even when the actual
metafrontier may be nonconvex. Since this convexification strategy
need normally not be valid, estimates of the production metafrontier
risk being biased.

Kerstens et al. (2019) develop new results on the union operation
on sets under various assumptions and deliver convincing empirical
evidence that a convexification strategy yields statistically significant
biases. In a similar vein, the empirical statistically significant biases
of a convexification strategy upon the Malmquist and Hicks-Moorsteen
productivity indices is documented in Jin et al. (2020).

Even though the vast majority of articles adopting a metafrontier ap-
proach appear to apply a convexification strategy, some articles do not
adopt such a questionable strategy: examples include Afsharian et al.

2 A complete list with abbreviations is found in Appendix C.
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(2018), Huang et al. (2013), Sala-Garrido et al. (2011), Tiedemann
et al. (2011), and (partially) Walheer (2018), among others.> However,
these studies do not document the bias inherent in a convexification
strategy.

This focus on the cost function is triggered by seminal contributions
to axiomatic production theory that show that if the PPS is convex,
then the cost function is convex in the outputs (see Jacobsen (1970,
Proposition 5.2 (Q.9)) or Shephard (1970, Proposition 72 (Q.11))).
Thus, using contraposition, when the cost function is nonconvex in the
outputs, then the PPS is nonconvex. Kerstens and Van de Woestyne
(2021) systematically review empirical evidence and illustrate a very
substantial effect of convexity on cost function estimates and on the
determination of scale economies (pointing even to the possibility of
contradictory results).

The purpose of this paper is to investigate for the very first time
the impact of convexity on the cost function and the effect of a
convexification strategy on the estimation of cost metafrontiers and
associated measures of efficiency. We also provide an empirical illus-
tration of the impact of convexity on the cost function and the effect
of convexification by using Chinese and USA banking data. To the best
of our knowledge, no such investigation is available in the literature
while cost functions and also cost metafrontiers seem to be very widely
used.* We anticipate two major results. First, some recent contributions
have tested and rejected the convexity of the PPS for banks (e.g., Wilson
(2021) and Wilson and Zhao (2023)). Based on the statistical results for
cost efficiency established in Simar and Wilson (2020b), we first extend
the convexity test proposed by Kneip et al. (2016) and augmented
by Simar and Wilson (2020a) for PPS to the cost function: this is new.
This new convexity test for the cost function is applied to Chinese and
USA banking data. We find for the first time evidence that Chinese
banks face a nonconvex cost function while USA banks seem to face
a convex cost function: we are unaware of any other test of convexity
of the cost function. Second, the cost metafrontier of Chinese and USA
banking data is clearly affected by a convexification strategy yielding
biased results. Thus, this almost universally adopted convexification
strategy should absolutely be abandoned in the future.

Our contribution has the following structure. Section 2 develops the
geometric intuition behind our claim that a convexification strategy
may create biases in the estimation of cost metafrontiers. Section 3
presents a formal mathematical treatment of the metafrontier method-
ology with a special focus on how the union operator applies to
cost functions. Section 4 explains how deterministic nonparametric
frontier estimators can be used to estimate convex and nonconvex
group-specific cost frontiers and associated cost metafrontiers. Sec-
tion 5 presents an empirical illustration using banking data from China
and the USA and makes use of advanced statistical testing tools. Fi-
nally, Section 6 summarizes our key results and wraps up with some
concluding comments.

2. Production metafrontiers, cost metafrontiers and the convexi-
fication strategy: Graphical illustration

We start by reminding the reader about the intuition underlying
the metafrontier approach. The metafrontier approach can be used
whenever firms can be classified into groups, and when firms in dif-
ferent groups choose input-output combinations from potentially dif-
ferent PPSs. To be concrete, we consider the traditional case where
all firms operating in a given period can be classified into groups
according to the technologies they use. Consequently, we generally
refer to group-specific sets and frontiers as technology-specific sets and
frontiers.®

3 To put things in perspective, a Google Scholar search on 12 February 2025
obtains 12400 results for the expression “metafrontier production”.

4 A Google Scholar search on 12 February 2025 obtains 10900 results for
the expression “metafrontier cost function”.
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Fig. 1. (a) Production frontiers in input-output space (b) Cost frontiers in cost-output space.

We follow O’Donnell (2016, p. 328) and define a technology to be
“a technique, method or system for transforming inputs into outputs
...”7. Fig. 1(a) illustrates technology-specific production frontiers in the
simple case where firms use one input to produce one output and
only two technologies are available. Let ! denote the set of input-
output combinations that are possible using technology 1. This set is
represented in Fig. 1(a) by the area above the horizontal axis and below
the polyline A, B;C;D,; this polyline is known as the technology-1
production frontier. Similarly, let > denote the set of input—output com-
binations that are possible using technology 2. This set is represented by
the area above the horizontal axis and below the polyline A, B,CyD;
this polyline is known as the technology-2 production frontier. Note
that both of the technology-specific sets 1! and t?> are convex. The
convexity assumption on these sets implies perfect time-divisibility,
i.e., that it is meaningful to combine observations belonging to each
set in a linear way.°

Fig. 1(a) also illustrates the concept of a production metafrontier.
Let T denote the set of input—output combinations that are possible
using the two technologies that are available. This metaset is given by
the union of ¢! and 2. It is represented in Fig. 1(a) by the area above the
horizontal axis and below the polyline A, B, E B; C; D;. This polyline is
known as the period-t production metafrontier. Clearly, this metaset
T is nonconvex. The convexification strategy involves convexifying
T by adding the points in the triangle B, EB;B,: these points are
only feasible (i.e., convexification is only valid) if it is possible to use
technology 1 some of the time and technology 2 the rest of the time.

Assuming perfect time divisibility, it may make sense to compare
any two points within the set ¢! to learn how one can improve the
performance of firms that use technology 1, and it may make sense
to do the same for any two points within the set 2. But, if firms are
locked into using either technology 1 or technology 2, then one cannot
learn how to improve their performance by a comparison of two points
belonging to different sets.

5 Translating our results to situations where firms are classified according to
other criteria is straightforward but may involve slightly different terminology.
For instance, if firms are classified into groups according to the production
environments in which they operate, then group-specific sets and frontiers
might be referred to as environment-specific sets and frontiers; if production
environments are viewed as states of nature, then they might be referred to
as state-contingent sets and frontiers.

6 Shephard (1970, p. 15) states that convexity is only “valid for time
divisibly-operable technologies”.
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In other words, it should be realized that a convexification strategy
is to some extent self-contradictory: it runs counter the very idea of
distinguishing between different production possibilities sets and only
allowing for the convexity of each set. Otherwise stated, the union
operator on technology-specific sets does not preserve convexity of the
resulting metaset.

We can now consider the measurement of efficiency with respect
to these frontiers. Consider the firm operating at point F,, and recall
that the firm can only use one technology (not a combination of both).
Recall that in this case the production metafrontier is given by the
polyline A, B, EB;C; D;. Assume that the firm uses technology 1, then
it can minimize the input required to produce its output by moving
to point F; on the technology-1 production frontier. If instead it had
used technology 2, then it could have minimized input use by moving
to point F, on the metafrontier. Full technical efficiency would have
required that it had opted to use technology 2 and operate at F,.
The input-oriented technical efficiency (ITE) of a firm is an input-
oriented measure of the distance from an observed point to a point
on the metafrontier. The ITE of the firm operating at F, for example,
is computed as the input used at F, divided by the input used at F.
The ITE of a firm can be broken into the product of an input-oriented
metatechnology ratio (IMR) and a measure of residual input-oriented
technical efficiency (RITE). The IMR is an input-oriented measure
of how well the firm has initially chosen its technology among the
available options, while RITE is an input-oriented measure of how well
its chosen technology has been used. Assuming that the firm operating
at F, had chosen technology 1, for example, then its IMR would be
computed as the input used at F, divided by the input used at Fj; its
RITE would be computed as the input used at F; divided by the input
used at Fj.

It is important to note that if the firm counterfactually had been able
to use technology 1 some of the time and technology 2 the rest of the
time, then the production metafrontier would have been given by the
polyline A, B, B;C; D;. In this counterfactual case, the firm would have
been able to minimize input use by moving to F; on the metafrontier.
The ITE of the firm operating at F, would then have been computed as
the input used at F; divided by the input used at F;,. Assuming that the
firm had chosen technology 1, then the IMR would have been computed
as the input used at F5 divided by the input used at F;. Its RITE would
still have been computed as the input used at F; divided by the input
used at F,. Hence, it follows that incorrectly convexifying the metaset
leads to downwardly biased measures of ITE and IMR (but not RITE).
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In this contribution we consider the metafrontier approach in a cost
frontier context. Fig. 1(b) illustrates technology-specific cost frontiers
in the simple case where price-taking firms produce one output and
only two technologies are available. Let ¢!(y, w) denote the minimum
cost of producing y when using technology 1 and when input prices are
given by w. This function is represented in Fig. 1(b) by the polyline
G, H, 1, J;. This polyline is known as the technology-1 cost frontier: all
cost-output combinations to the right of the vertical axis and above this
frontier are possible when using technology 1. Similarly, let ¢2(y, w)
denote the minimum cost of producing y when using technology 2
and when input prices are given by w. This function is represented
in Fig. 1(b) by the polyline G, H,I,J5. This polyline is known as the
technology-2 cost frontier: all cost-output combinations to the right
of the vertical axis and above this frontier are possible when using
technology 2.

Fig. 1(b) also illustrates the concept of a cost metafrontier. Let
C(y,w) denote the minimum cost of producing y when using the two
technologies available and when input prices are given by w. This
function is represented in Fig. 1(b) by the polyline G, H,KI;J;. This
polyline is known as the cost metafrontier: all cost-output combinations
to the right of the vertical axis and above this metafrontier are possible
when using the available technologies. Clearly, this set of cost-output
combinations is nonconvex. The convexification strategy now involves
adding the points in the triangle H,I; KH,. Again, points in this
triangle are only feasible (i.e., the convexification strategy is only valid)
if it would be possible to use technology 1 some of the time and
technology 2 the rest of the time.

But, as argued for the metaset above, this convexification strategy is
self-contradictory and does not allow to learn from proper comparisons
among the group cost functions.

We can now consider the measurement of cost efficiency with
respect to these cost frontiers. Consider the firm operating at point L,
and again recall that this firm is only able to use one technology (not
a combination of both). Recall that in this case the cost metafrontier
is given by the polyline G, H,K I;J;. Assume that the firm uses tech-
nology 1, then it minimizes the cost of producing its output by moving
to point L; on the technology-1 cost frontier. If instead it had used
technology 2, then it could have minimized cost by moving to point
L, on the metafrontier. Full cost efficiency would have required that
it use technology 2 and operate at L,. The cost efficiency (CE) of a
firm is a cost-oriented measure of the distance from an observed point
to a point on the metafrontier. The CE of the firm operating at L,,
for example, is computed as the cost at L, divided by the cost at L.
The CE of a firm can be broken into the product of a cost-oriented
metatechnology ratio (CMR) and a measure of residual cost efficiency
(RCE). The CMR is a cost-oriented measure of how well the firm has
chosen its technology, while RCE is a cost-oriented measure of how
well its chosen technology has been used. Assuming the firm operating
at L, has chosen technology 1, for example, then its CMR is computed
as the cost at L, divided by the cost at L;: its RCE is computed as the
cost at L; divided by the cost at L.

Again, it is important to consider the counterfactual case where the
firm had been able to use technology 1 some of the time and technology
2 the rest of the time. In this case, the cost metafrontier would have
been given by the polyline G,H,1I;J;. Consequently, the firm would
have been able to minimize cost by moving to point L3. The CE of the
firm operating at L, would then have been computed as the cost at Ls
divided by the cost at L. If the firm had chosen technology 1, then
the CMR would have been computed as the cost at Ly divided by the
cost at L;. Its RCE would still have been computed as the cost at L;
divided by the cost at L. It follows that incorrectly convexifying the
cost-output metaset leads to downwardly biased measures of CE and
the CMR (but not RCE).

This discussion of convexification can be linked to a specific prop-
erty of the cost function that is worth spelling out: if PPSs are convex,
then cost functions are convex in outputs (see, e.g., some seminal
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contributions to axiomatic production theory like Jacobsen (1970,
Proposition 5.2) or Shephard (1970, p. 227)). This empirical property
of the cost function seems rarely tested. This general property has been
sharpened by Briec et al. (2004) who establish that (i) cost functions
estimated on convex PPSs yield lower or equal cost estimates compared
to cost functions estimated on nonconvex PPSs; and (ii) both types of
cost functions coincide for the single output and constant returns to
scale case. Obviously, similar properties exist for the revenue function
and the profit function: except for the long-run profit function, all other
dual specifications are affected by the convexity or not of the PPS.

If the production metafrontier is nonconvex, which is normally the
case, then the cost metafrontier is generally nonconvex in outputs (see
Fig. 1(b)). To the best of our knowledge, there are only two articles
that estimate a cost metafrontier (or similar dual function) without
using a convexification strategy: Campos-Alba et al. (2020) and Pérez-
Lopez et al. (2016) estimate a cost metafrontier under the assumption
that neither the group cost frontiers nor the cost metafrontier are
convex.” Instead, most researchers adopt a convexification strategy. For
example, Bos and Schmiedel (2007) estimate cost metafrontiers using
parametric estimators and a convexification strategy, while Huang
et al. (2015) estimate cost metafrontiers (or similar dual functions)
using nonparametric estimators and a convexification strategy. None
of these authors test the validity of their convexification strategy. A
benign interpretation of this state of affairs is that most authors seem
to believe that using a convexification strategy when estimating a
cost metafrontier is innocuous and does not lead to any bias. This
explains the title of our contribution: we are interested in whether the
convexification strategy leads to biased estimates of the true nonconvex
cost metafrontier and associated measures of efficiency.

3. Production metafrontiers and cost metafrontiers: Mathematical
analysis

We begin our formal mathematical treatment of the metafrontier
methodology by introducing some useful basic mathematical notions
and notation.

3.1. Mathematical preliminaries

Let my € R = RU {—00,+c0} denote the infimum of a set A C R.
Note that m, = —o if the set A is unbounded to the left, and m, = +c0
if A is empty or unbounded to the right. We then have the following
proposition.

Proposition 3.1. Consider a real-valued function f : R" - R withn € N
variables. Let A and B be subsets of dom(f). Let m,, mp and m, g denote
the infimum of {f(x) | x € A}, {f(x) | x € B} and {f(x) | x € AU B},
respectively. Then, the following holds true:

(a) If AC B, then my > mg;
(b) myp =min{my,mpg}.

This proposition is common knowledge: thus, we omit its proof.
Proposition 3.1 states that if set A is a subset of set B, then the infimum
of a real-valued function over set B is smaller than the infimum of that
same real-valued function over set A. The infimum of a real-valued
function over the union of two sets is the minimum of the respective
infima of this real-valued function over both sets separately.

7 Obviously, as mentioned above, also some contributions using a long-run
profit function approach when estimating a metafrontier do not introduce any
bias, since the effect of nonconvexity of the PPS is logically indistinguishable.
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3.2. Technologies and cost frontiers

Technologies can be represented by technology-specific PPSs. The
gth technology-specific production possibilities set (TPPS), for example,
is the set containing all input-output combinations that are possible
using technology g. Denote the number of inputs and outputs by M € N
and N € N, respectively, and denote by x € R} and y € R} the vectors
of inputs and outputs, respectively. Mathematically, the gth TPPS is:

(€Y

Loosely speaking, the boundary of this set is the gth technology-specific
production frontier. In the literature, it is also common to refer to this
boundary as the gth group frontier.

It is common to make one or more of the following assumptions
regarding the TPPS defined by (1):

8 = {(x.y) € RY xRY | x with technology g can produce y}.

(T.1) (x,0) € ¢ for all x € RY.

(T.2) If (0, y) € 7%, then y = 0.

(T.3) 8 is a closed subset of RM x RY.

(T.4) If (x,y) € 8 and (x', —y") > (x,—y), then (x',)’) € 8.
(T.5) 8 is a convex set.

(T.6) If (x,y) € 18, then 6(x, y) € & for all 56 > 0.

In words, these assumptions state that: (i) inactivity is possible,
(ii) there is no free lunch, (iii) the set of feasible input-output com-
binations contains all the points on its boundary (closedness), (iv)
inputs and outputs are freely (or strongly) disposable, (v) the TPPS
is convex, and (vi) the technology-specific production frontier exhibits
constant returns to scale. For more details on these assumptions see,
for example, O’Donnell (2018, p. 55-63).

Under weak regularity conditions, technologies can be represented
by technology-specific cost functions. The gth technology-specific cost
function (TCF), for example, gives the minimum cost of producing a
given output vector when using technology g and facing given input
prices. Mathematically, this leads to the following definition:

Definition 3.1. The TCF that gives the minimum cost of producing
y € RY when using technology g and facing prices w € RY is defined
as cé : ]Riv XRQ” >R, (yw) - ct(y,w) = inf{w'x | (x,y) € 8}.

With this definition we can now state the following proposition.

Proposition 3.2.  Consider two technologies g and h, a given output
N ; ; M h

level y € R} and a vector of input prices w € RY. If t* C t", then

ct(y,w) = "y, w).

The proof of this proposition and all other propositions is found in
Appendix A. Thus, the cost function representing a smaller PPS always
takes a value that is greater than or equal to the value taken by a cost
function representing a larger PPS.

3.3. Metatechnologies and cost metafrontiers

The set of technologies that exist in a given period is sometimes
referred to as a technology set (e.g. O’Donnell, 2018, p. 87). In the
metafrontier literature, technology sets are more often referred to as
metatechnologies. ~Metatechnologies can be represented by
metatechnology-specific ~ production  possibilities  sets.  The
metatechnology-specific production possibilities set (MPPS), for exam-
ple, is the set containing all input—output combinations that are possible
using the metatechnology (i.e., using the technologies that exist in a
given period).

To formalize these ideas, let I' = {1, ..., P} denote the set of P € N
technologies that exist in a given period. Then I" can be represented by
T=U ,5 -1 18 = U,er 1. Using the definition of the union operator, note
that this MPPS can also be defined as

T ={(x,y) € Rff X Rf | 3g € I' : x and technology g can produce y}.
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(2)

This metaset inherits many of its properties from the properties of
the TPPSs. This is explicit in the following proposition.

Proposition 3.3. Consider the metatechnology I'. If 1¢ satisfies assump-
tion (T.n), with n € {1,2,3,4,6}, for all g € I', then T also satisfies
(T.n).

Remark 3.1. If ¢ satisfies convexity (i.e., (T.5)) forall g e I', then T
does not necessarily satisfy assumption (T.5). This statement is easily
illustrated in Fig. 1(a).

It is common to represent metatechnologies using metatechnology-
specific cost functions. The metatechnology-specific cost function
(MCF), for example, gives the minimum cost of producing a given
output vector when using the metatechnology and facing given input
prices. Mathematically, this leads to the following definition:

Definition 3.2. The MCF that gives the minimum cost of producing
y€ER f when using the metatechnology and facing input prices w € RJ’Y
is defined as C : RY xRY > R, : (y,w) » C(y.w) = inf{w'x | (x,y) €
T).

While Definition 3.2 assumes fixed input prices w for theoreti-
cal derivation, empirical estimation incorporates heterogeneous input
prices to better capture the realities of firm-level cost variations. We
therefore have the following remark for the empirical applications.

Remark 3.2. If firm i faces heterogeneous input prices w; € RM, the
MCF that gives the minimum cost of producing y, € RY when using
the metatechnology is defined as C : RN x RY - R, : (y,w,) ~
C(y;,w;) = inf{w]x | (x,y;) € T}.

The MCF satisfies the following relations.

Proposition 3.4. Consider the metatechnology I', a given output level
y € RY and a vector of input prices w € RY.

() VgeTl :ct(yw =Cly,w);
(b) C(y,w)=min{c8(y,w) | g € I'}.

Part (a) of this proposition says that the value of every TCF is larger
than or equal to the value of the MCF: this is because every TPPS is
contained in the MPPS. Part (b) of this proposition says that in order
to determine the value of the MCF it suffices to get the minimum of all
available TCFs.

Note that, similar to distance functions (see Kerstens et al., 2019),
TCFs and MCFs are not always well-defined (in the sense of resulting
in a finite value). To illustrate this, consider the firm operating at point
I, in Fig. 1(b). It is not possible to produce output y, using technology
2, so cz(y4,w) = +oo0. Note that even though the technology-2 cost
function is not well-defined, the MCF is still well-defined: as a result
of Proposition 3.4(b), C(y4, w) = min{c! (4, w), +c0} = cl(yy, w).

Proposition 3.4(b) also implies that the MCF need not be convex in
outputs. Again, Fig. 1(b) can be used to illustrate. Consider the output
level y; of observation K. Since this output level is located between
the output levels y; and y, of observations H, and I, respectively,
there exists some a € (0, 1) such that y3 = ay; + (1 — a)y,. According to
Proposition 3.4(b), C(y3,w) = min{c!(y3, w),c2(y3,w)} = cl(y3,w) =
02(y3,w). It is easy to show that this value is larger than the value
aC(y, w)+ (1 —a)C(ys, w) = ac(yp, w) +(1 - a)cl(y4, w). By definition,
this illustrates the nonconvexity of the MCF in this example.

Finally, recall from Section 2 that the CE of a firm can be decom-
posed into the product of a CMR and a measure of RCE. Mathematically,
the CE of a firm that faces input prices w and uses inputs x to produce
outputs y is CE(x, y, w) = C(y, w)/w'x. If a firm uses technology g, then
its CMR and RCE are CMRé(y, w) = C(y, w)/cé(y, w) and RCE#(x, y, w) =
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ct(y,w)/w'x. Since w'x > c8(y,w) > C(y,w), it is obvious that all

three measures lie in the closed unit interval. Moreover, we have the
following decomposition:

CE(x, y, w) = CMR#(y, w) - RCE#(x, y, w). 3)

This implies RCE#(x, y,w) = CE(x,y,w)/ CMR8(y,w). Thus, RCE can
be viewed as the component of cost efficiency that remains after
accounting for the CMR (hence the term ‘residual’). Related cost-
oriented measures of performance are found elsewhere in the literature:
e.g., our CMR is the reciprocal of the ‘cost gap ratio’ defined by Huang
et al. (2015, p. 325). Those same authors also exploit the traditional
distinction between technical and allocative efficiencies to decompose
their equivalent of RCE. Note furthermore that the convexification
strategy consisting in convexifying the metatechnology when comput-
ing the cost function affects the whole decomposition (3), except for
the component RCE?(x, y, w).

4. Nonparametric frontier estimators

In the next two subsections, we examine the consequences of con-
vexification for well-known nonparametric estimators of nonconvex
and convex PPSs and associated cost functions. Suppose we have n €
N observed input-output combinations with which to estimate the
MPPS. We introduce the following notation. The observed input—output
combinations used to estimate the MPPS are denoted (xq,1), ...,
(*,.¥,) € RM x RY. The nonparametric estimator of the gth TPPS
only uses n¥ < n of these observations. To identify these particular
observations, consider the one-to-one index function ¢, : {1,...,n8} —
{1,...,n}. Then, (x¢g(i)’ yq,,g(,-)) denotes the ith observation in the set of
observations used to estimate the gth TPPS. For example, consider the
case where the nonparametric estimator of the gth TPPS only uses the
four observations (x4, ¥5), (x4, ¥4), (x5, y5) and (x5, y,). Then, n¥ = 4 and
b, 11,2,3,4) > {1.....n} with ¢,(1) = 2, ¢,(2) = 4, ¢,(3) = 5 and
b (4 =7.

4.1. Nonconvex PPSs and related cost functions

We begin by considering the estimation of nonconvex PPSs under
the assumption of either variable or constant returns to scale. First,
if all TPPSs are nonconvex (NC) and their corresponding frontiers
exhibit variable returns to scale (VRS), then an asymptotically unbiased
estimator of the gth TPPS is:

né

g _ M N

'NCvRs = {(X’y) ERS xR | 2 Ape X (i) S %5
P

né

X dg0 =L Ag,0 € (0.1} }.
i=1

né

D gy Vibyir 2 V-

4

Importantly, the constraints Zl"il Apoiy = 1 and A0y € {0,1} ensure
that only one activity vector Ad)g(,-) is nonzero (and equal to one);
except in restrictive special cases, this means that the estimated TPPS
is nonconvex. The estimator defined by (4) is commonly known as a
free disposal hull (FDH) estimator. The associated FDH estimator of the
MPPS is: Tycyrs = Uger ycyrs-

Second, if all TPPSs are NC and their corresponding frontiers ex-
hibit constant returns to scale (CRS), then an asymptotically unbiased
estimator of the gth TPPS is:

né

g _ M N
'NCCRS = {(x’ M ERY XRY | Y 64y (1Xp, i) S %
i=1

né

Z 5, Vg0 Z Vs

i=

né

Y dgg = Ldg0 € (0.1),52 0}, ®)
i=1

8 Campos-Alba et al. (2020) and Pérez-Lépez et al. (2016) consider a robust
version of this estimator that allows for outliers.
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Observe that this estimator includes a scaling parameter §; this param-
eter allows for an unlimited scaling of all n8 observations determining
the TPPS so as to embody the assumption of CRS. The associated
estimator of the MPPS is Tyc crs = Uyer §c.crs-

Definitions 3.1 and 3.2 can now be used to motivate FDH estimators
of TCFs and MCFs. An overview is given in the following definition.

Definition 4.1. For the metatechnology I', some output level y € Rf
and a given vector of input prices w € RY, the following estimators
can be introduced:

(a) If all TPPSs are NC and their corresponding frontiers exhibit VRS,
then an asymptotically unbiased estimator of:

; P _ ' g .
(i) the gth TCF is Cyeyrs W) = inf{w'x | (x,y) € tNCA,VRS}’

(ii) the MCF is Cycyrs(y:w) = inf{w'x | (x,y) € Tycyrs)-

(b) If all TPPSs are NC and their corresponding frontiers exhibit CRS,
then an asymptotically unbiased estimator of:

(i) the gth TCF is ClgVC,CRS(y’ fVC’CRS b

(i) the MCF is Cyc crs(ys w0) = inf{w'x | (x,) € Tyc.crs)-

w) =inf{w'x | (x,y) €1

Relations between several of these estimators are summarized in the
following proposition.

Proposition 4.1.  Consider the metatechnology I', some output level
y € ]Rf and a given vector of input prices w € RQ” . Then the following
relations hold true for all g € I':

(@ cfeyrs® W) 2 Cneyrs W) e} cpss W) 2 Cnecrs(s W)
®) cirC’VRs(yﬂ w) = C}EVC,CRS()’, w), Cncyrs:w) = Cye crs(y: W)
(©) Cncyrs(y,w) = min{c]gVCYVRS(J’s w)|gerl};
(@) Cnccrsyw) = min{ci,C’CRS(y, w)lgerl};
eNey s W) = min { W | T2y Agy %o < X

Tt A, 0Ve,0 2 V-

T Agyir = LAg o € (0.1) };
CNe.crs(y W) = min { w'x | Zﬁl Oy ()X py(i) S X

Tt 64,1V, ) 2

port Ap iy =1 Ag, ) €10,1},6 2 0};

(e)

@

Cnevrs(y,w) = min { Wx| Xeer Zf’il A%, () < %

Yeer iy Ao )Yy 2 Vs

Teer et Ag,00 = LA, € (0.1) };
Cne.crs(¥y, w) = min { wx | Tper Tty 044, Xpy(i) S X5

DI Yt 0, (Vb (i) Z Vs

Teer it Ao, = LAg,p) € (0,1},6 > 0}‘

Part (a) of this proposition says that estimated TCFs always take
values that are larger than or equal to the values taken by estimated
MCFs, while part (b) simply reminds us that cost functions estimated
under a VRS assumption always take values that are larger than or
equal to the values taken by cost functions estimated under a CRS
assumption. Parts (c¢) and (d) say that, irrespective of the returns to
scale assumption, the estimated values of MCFs can be computed as
the minima of the estimated values of the relevant TCFs. Parts (e)
and (f) define the estimated TCFs under the assumptions of VRS and
CRS. Finally, parts (g) and (h) reveal that MCF is estimated using all
observations associated with all the technologies available in a given
period.

®

W]
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Finally, Proposition 4.1 reveals that estimating cost functions as-
sociated with nonconvex PPSs involves solving various linear and
nonlinear binary mixed integer programs. For details of alternative so-
lution strategies,including the fastest implicit enumeration algorithms
over all observations n: see Kerstens and Van de Woestyne (2014).

4.2. Convex PPSs and related cost functions

We now consider the estimation of convex PPSs under the assump-
tion of either VRS or CRS. First, if all TPPSs are convex and their
corresponding frontiers exhibit VRS, then an asymptotically unbiased
estimator of the gth TPPS is:

né
g — M N
"CyRrs = {(x’ M ERY XRY | Y 4y oy%g,0) < X,
i=1
né

D Agi = Lig,o 2 °}~
i=1

This estimator is the convexified version of (4). It differs from (4) in
that the nonnegative activity (or intensity) variables (4, ;) are no
longer restricted to be binary integers. The estimator defined by (6)
is commonly known as a data envelopment analysis (DEA) estimator.
The associated convex estimator of the MPPS is: T¢ y gs = Uyer tgcy RS"

Second, if all TPPSs are convex and their corresponding frontiers
exhibit CRS, then an asymptotically unbiased estimator of the gth TPPS
is:

né

Z Ay )Y Z Vs

i=

(6)

né né

— M N
= {(x» »ERS XRY| Z Ao X (i) S %5 Z Ao () Viog i) Z Vs

i=1 i=1
hgy 2 0}

This estimator is the convexified version of (5). Again, it differs from
(5) in that the nonnegative activity variables are no longer restricted to
be binary integers. Note that an additional transformation (i.e., rewrite
64, » in (5) as A/ = and rename as A, ) is needed to obtain the
Dg (i) b (i) g (D)

exact result in (7). The associated convex estimator of the MPPS is

e
C,CRS

()

- g
Tecrs = Ugel" ccrs®
Definitions 3.1 and 3.2 can now be used to motivate convex es-
timators of TCFs and MCFs. An overview is given in the following
definition.

Definition 4.2. For the metatechnology I, some output level y € RY
and a given vector of input prices w € RY, the following estimators
can be introduced:

(a) If all TPPSs are convex and their corresponding frontiers exhibit
VRS, then an asymptotically unbiased estimator of:
(i) the gth TCF is céVRS(y, w) = inf{w'x | (x,y) € téVRS};
(ii) the MCF is C¢ y gs(y, w) = inf{w'x | (x,y) € T yrs}-

(b) If all TPPSs are convex and their corresponding frontiers exhibit
CRS, then an asymptotically unbiased estimator of:
; i 8 _ g .
(i) the gth TCF is ¢t ors(-w) = inf{w'x | (x,y) € fecrsh
(ii) the MCF is Cecrs(y,w) = inf{w'x | (x,y) € Tecrsl-

Relations between several of these estimators are summarized in the
following proposition.

Proposition 4.2.  Consider the metatechnology I', some output level
y € RY and a given vector of input prices w € RM. Then the following
relations hold true for all g € I':

(@) CéVRS(y’ w) > CC,VRs(y, w), CéCRS(J’, w) > CC,CRS(% w);
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® céVRS(y’ w) 2 CéCRs(y’ w), Ccyrs(yw) = Cccrsy,w);

(© Ccyrs(y,w)= min{cé‘/RS(y,

w)lgerl};

(@ Cccrs(yw) =min{cf ps(v.w) | g €T

C¢.y rs(Y>w) = min { W'x | Ty dg i%g,0) < % Tiy Ay 070,00 2 V-
T Agy = LAg,) 2 0}§

¢¢. crs(y»w) = min { WX | T Agyir¥pyi) < % iy A0V 2 V-
Ay i) 2 0};

(e)

®

Ceyrs(y,w) = min { wWx | Ter Ticy ApyXg, () < >
Teer Tit Ao, Vo0 2 9
Teer I Apeiy = L Ag ) 2 0};
Cecrs(y, w) 2 min { wW'x | Tyer Tity Ape X gy < %5
Teer Zim Ao, )Yy i) 2 Vs A, () 2 0}~
(@) If N =1, (i.e., only one output is produced), then
Cecrs(,w)=min § w'x| Y cr )2 A )%y ) < X
Yeer o Ao ) Vbei) Z Vs Aepy i) 2 0}-

Note that Propositions 4.1 and 4.2 are rather similar. However,
important differences can be observed when comparing parts (g) and
(h). The equality observed in the nonconvex case is now replaced by an
inequality in the convex case. These results are similar to the ones in
Proposition 5.5 in Kerstens et al. (2019). We stress that equality is not
true in general unless CRS is assumed and only one output is produced
(i.e., result (i) of Proposition 4.2). Also note that the cost functions on
the right-hand sides of (g) and (k) of Proposition 4.2 correspond with
those of the convexified MPPSs. Hence, costs computed by incorrectly
convexifying a MPPS systematically underestimate true costs.

Finally, Proposition 4.2 reveals that estimating cost functions asso-
ciated with convex production possibilities sets involves solving linear
programming problems for each evaluated observation, as discussed
in the mainstream efficiency literature (e.g., see O’Donnell (2018, p.
226)). This implies that metatechnology specific cost functions in the
convex case can only be computed via a sequence of linear programs
using Proposition 3.4(b), while the nonconvex counterparts only ne-
cessitate computing simple implicit enumeration algorithms over all
observations n. It remains an open question whether in the convex case
a single linear program can be found to do the job.

®

W]

5. Empirical illustration

In this section we use original banking data from China (CN) and the
United States (USA) to illustrate the potential effects of a convexifica-
tion strategy on estimates of cost metafrontiers and associated measures
of efficiency.

5.1. Data set: Banks from China and the United States

We retrieve the banking data for CN and the USA in 2019 from the
BankScope database. Our sample comprises the largest banks encom-
passing 124 banks from CN and 153 banks from the USA. Following
the intermediation approach, we assume that banks use three inputs to
produce three outputs. The three inputs are deposits (x;), labor (x,),
and physical capital (x3). Their respective input prices are determined
by the ratio of input expenses to the corresponding inputs, denoted
as w;, wy, and ws, respectively.’ The three outputs are loans (y),

9 Since the number of employees is unavailable for many banks in our
sample, we adopt the approach of Beccalli et al. (2015), where the ratio of
labor expenses to total assets is used as a proxy for labor price and total assets
as a proxy for labor.
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Table 1

Summary statistics for the CN and USA banks.
Variable Minimum Q1 Median Mean Q3 Maximum
124 CN banks
»n 42.937 9289.814 15750.933 124116.189 36 659.041 2405188.184
Vs 48.148 3090.382 6626.673 50094.086 16 053.784 1057 053.375
V3 0.000 1596.715 4251.240 32476.381 10643.788 441 649.774
X1 92.804 15013.189 29290.715 196198.100 72066.293 3701724.024
Xq 330.115 17 606.624 33176.844 228003.751 80235.759 4309351.040
X3 0.514 69.544 168.420 1665.048 497.133 41013.453
wy 0.010 0.022 0.026 0.026 0.029 0.042
w,y 0.002 0.004 0.005 0.005 0.006 0.020
wy 0.205 0.456 0.634 1.804 1.097 18.556
153 USA banks
»n 1126.664 4458.623 9671.747 47 214.852 23271.356 969 829.000
Yo 150.996 1180.880 2785.468 27 034.831 7563.811 1084 769.000
y3 18.614 1827.726 3755.381 45562.285 11889.265 1174417.000
X, 2839.178 5240.233 11574.706 69 351.504 28975.669 1776586.000
Xo 3614.957 6173.877 13495.944 85878.343 34105.305 2337 646.000
X3 0.007 67.134 149.366 813.153 340.515 22432.000
w, 0.000 0.007 0.010 0.011 0.013 0.036
wy 0.000 0.010 0.012 0.013 0.014 0.050
ws 0.214 0.599 0.815 13919.060 1.299 2128807.000

securities (y,), and off-balance items (y3). Table 1 summarizes the
descriptive statistics for the inputs, the outputs and the input prices for
both CN and USA banks. All monetary values are reported in constant
million USA dollars.

Table 1 indicates that CN banks tend to be larger than USA banks,
with both median and mean values of loans and deposits surpassing
those of USA banks. Nonetheless, USA banks typically have a greater
amount of off-balance sheet items. As a result, there is significant het-
erogeneity between CN and USA banks. In this illustration, it is rational
to assume that the banks in CN and USA have different technolo-
gies. The differences between CN and USA banks can be multifaceted
and can include variations in market structures, management prac-
tices, technological advancement, economic conditions, and regulatory
frameworks. By definition, our metatechnology is I" = {1,2}.

The traditional economic understanding of the bank’s production
makes us believe that it may be possible for the manager of a given
bank to use a given input vector to produce a given level of output
for some time within the production period, and then use a different
input vector to produce a different level of output for the rest of
the time. This suggests that each TPPS may be convex. Consequently,
we begin by estimating convex TPPSs and associated TCFs using a
nonparametric convex estimator. Given the different types of regulatory
frameworks and market structures involved in the production, it is also
our understanding that the manager of a given bank cannot normally
generate the outputs by using convex combinations of technologies in
CN and USA. This suggests that the MPPS should not be convexified.
It is now an open question to check how a convexification strategy of
the MPPS approximates the true nonconvex MPPS. We are particularly
interested in the effects of the convexification strategy on estimates of
efficiency.

It is widely assumed in the banking literature that the bank’s
production process in general is characterized by convex PPSs, and
that the boundaries of those sets are linear. However, recently several
contributions have tested and rejected the convexity of the PPS for
banks (see, e.g., Wilson and Zhao (2023) for CN banks and Wilson
(2021) for USA banks). If PPSs are nonconvex, then there is no reason
to suppose that cost functions are convex in the outputs. Economists
who take this seriously would presumably want to estimate TPPSs that
are not convex. To satisfy the curiosity of these economists, we also
estimate nonconvex TPPSs and associated TCFs using a nonparametric
FDH estimator.
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5.2. Empirical results

Descriptive statistics for the estimates of CE(x, y, w), RCE#(x, y, w)
and CMR#(y, w) are reported in the columns labeled C-NC and NC-NC in
Table 2. The acronym C-NC indicates that the TPPSs are convex but the
MPPS is not, while the acronym NC-NC indicates that neither the TPPSs
nor the MPPS are convex. All estimates have been obtained under the
assumptions that production frontiers exhibit VRS. In Table 2, both C-
NC and NC-NC results are reported in two blocks of four columns each,
where the last column contains the number of infeasible solutions.!’
Turning to the explanation of the rows in Table 2, the first block of
results contains summary statistics for all 124 + 153 = 277 banks in
the sample. The next two blocks of numbers report summary statistics
for the 124 CN banks and the 153 USA banks. The first row in each
block reports the number of efficient observations (i.e., the number of
times the relevant performance measure equals 1). The next three rows
in each block report the geometric averages,'' standard deviations, and
minima of the relevant estimates.

Several conclusions can be drawn from the results reported in Table
2. First, by construction, estimates of CE(x, y,w) obtained using the
C-NC model can be no higher than those obtained using the NC-NC
model. This is reflected in both the lower average CE score and the
smaller number of efficient observations under the C-NC model. The
estimates of CE(x, y, w) obtained using the C-NC model are on average
0.9282 — 0.6587 = 0.2695 lower than those obtained using the NC-
NC model; this translates into a percentage difference of (0.9282 —
0.6587)/0.9282 = 29.03%.'>

Second, also by construction, estimates of RCE®(x, y, w) obtained
using the C-NC model can be no higher than estimates obtained using
the NC-NC model. This again shows up in both the lower average RCE
score and the smaller number of efficient observations under the C-NC
model. The estimates of RCE?(x, y, w) obtained using the C-NC model
are on average 0.9556 — 0.7297 = 0.2259 lower than those obtained
using the NC-NC model; this translates into a percentage difference of
(0.9556 — 0.7297)/0.9556 = 23.64%.'°

10 Briec and Kerstens (2009) discuss on the possibility of infeasibilities for
general distance functions.

1 The use of geometric averages guarantees that the multiplicative
decomposition in (3) holds exactly.

12 Taking the ratio of the CE estimates nets out the observed cost and
reveals the difference in the estimated value of the MCF under convexity and
nonconvexity.
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Table 2
C-NC and NC-NC Estimates of CE(x, y, w), RCE*(x, y, w) and CMR#(y, w).
C-NC NC-NC
CE(-) RCE*(+) CMRE(+) Infeas. CE(-) RCE®(+) CMRé(+) Infeas.

All 277 # Effic. Obs. 17 31 160 155 194 220

Banks Geom. Mean 0.6587 0.7297 0.9027 8 0.9282  0.9556 0.9713 79
Stand. Dev. 0.1539 0.1490 0.1264 0.1009 0.0847 0.0633
Min. 0.4054 0.4054 0.4517 0.5759  0.5759 0.6381
Li-test® 106.393 82.870 105.462
p-value (0.000) (0.000) (0.000)

124 CN # Effic. Obs. 8 19 22 66 91 87

Banks Geom. Mean 0.6397 0.7934 0.8062 4 0.9280 0.9733 0.9535 79
Stand. Dev. 0.1646 0.1258 0.1312 0.0925  0.0533 0.0789
Min. 0.4301 0.6034 0.4517 0.6381 0.7450 0.6381
KSW-test#1? 3.020
p-value (0.003)
KSW-test#2* 0.852
p-value (0.025)

153 USA  # Effic. Obs. 9 12 138 89 103 133

Banks Geom. Mean 0.6745 0.6818 0.9893 4 0.9283  0.9415 0.9860 0
Stand. Dev. 0.1437 0.1500 0.0394 0.1075 0.1021 0.0429
Min. 0.4054 0.4054 0.7495 0.5759  0.5759 0.6507
KSW-test#1? 236.459
p-value (0.485)
KSW-test#2? 0.766
p-value (0.225)

a Exact p values are reported in round brackets underneath.

Third, estimates of CMR#(y, w) obtained using the C-NC model can
in theory be either higher or lower than those obtained using the
NC-NC model. Table 2 reveals that in our application estimates of
CMRé(y, w) obtained using the C-NC model are on average (0.9713 —
0.9027)/0.9713 = 7.06% lower than estimates obtained using NC-NC
model. Furthermore, the average value of the CMR®(y, w) estimates
obtained using the NC-NC (or C-NC) model for the 153 USA banks is
close to one and also larger than the corresponding estimate for the CN
banks. This indicates that the USA banks in our sample are cost-superior
to the CN banks, and that some managers of CN banks may benefit
by adopting the technology of the USA banks. We are only aware of
a handful of other studies that use metafrontier methods to determine
the inferiority or superiority of specific technologies. For instance, Sala-
Garrido et al. (2011) evaluate four wastewater treatment technologies
and find that one technology dominates all three others.

Fourth, there are 4 instances of infeasible solutions for each sub-
sample of CN and USA banks when computing distances to selected
technology-specific frontiers using the C-NC model. This represents
about 3% of the sample. In contrast, for the NC-NC model, there are
79 instances of infeasible solutions among CN banks, while USA banks
do not encounter any infeasible solutions at all. This represents about
28.5% of the sample.

To formally assess the differences in efficiency scores, we employ
a nonparametric test initially proposed by Li (1996): refinements are
due to Li et al. (2009), among others. This nonparametric test focuses
on differences between entire distributions of efficiency scores instead
of focusing on, for instance, differences in first moments (as, e.g., the
Wilcoxon signed-rank test). It looks for differences between two kernel-
based estimates of density functions f and g of a random variable x.
The null hypothesis is that the two probability density functions (pdfs)
are equal: Hy : f(x) = g(x) for all x. The alternative hypothesis is that
they are not equal: H; : f(x) # g(x) for some x.'*

13 Taking the ratio of the RCE estimates nets out the observed cost and
reveals the difference in the estimated value of the TCF under convexity and
nonconvexity.

14 The test is valid for both dependent and independent variables. Observe
that dependency is a characteristic of frontier estimators: i.e., cost efficiency
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Results of these Li tests are reported in the first block of Table
2: we report the values of the Li test, and the exact p values are
reported in round brackets underneath. We reject the null hypothesis
that estimates of C E(x, y, w) obtained using the C-NC model have the
same distribution as estimates obtained using the NC-NC model: Li test
statistic takes the value 106.393; and the exact p-value is 0.000. We
also reject the null hypothesis that estimates of RC E#(x, y, w) obtained
using the C-NC model have the same distribution as estimates obtained
using the NC-NC model (p-value 0.000). Finally, we reject the
null hypothesis that estimates of CM Ré(y, w) obtained using the C-
NC model have the same distribution as estimates obtained using the
NC-NC model (p-value = 0.000).

To formally test whether each technology-specific cost function for
CN and USA banks separately is convex, we extend the convexity test
proposed by Kneip et al. (2016) and further robustified by Simar and
Wilson (2020a) for the production function to the cost function. Details
about the initial and robustified version of the tests as well as some
sensitivity analysis are found in Appendix B. The null hypothesis is
that the cost function is convex in the outputs, while the alternative
hypothesis is that the cost function is nonconvex in the outputs. The
extension in Appendix B describes two tests, denoted as KSW-test#1
and KSW-test#2. KSW-test#1 involves computing the average of the
test statistic across several sample splits. KSW-test#2 entails conducting
a Kolmogorov-Smirnov test to assess the uniformity of the distribution
of p-values across multiple sample splits.

The test results presented in Table 2 show that for the CN banks
both KSW-test#1 and KSW-test#2 reject the convexity assumption and
hence the cost function is nonconvex in outputs. By contrast, we cannot
reject the convexity assumption for USA banks and hence the convexity
assumption for the cost function seems suitable for USA banks. This
should make applied researchers think harder about imposing convex-
ity: to the best of our knowledge, the studies by Campos-Alba et al.
(2020) and Pérez-Lopez et al. (2016) are the only other studies using
a NC-NC model in this cost metafrontier context (but these authors do

levels depend on sample size, among others. We opt for the standard Li
test over an adapted-Li test (Simar & Zelenyuk, 2006) since the statistical
properties for meta-cost efficiency and the cost-oriented metatechnology ratio
are not yet available. The R code for the Li-test can be found in the np package.
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Table 3
C-NC and C-C Estimates of CE(x,y, w) and CMRé(y, w).
CE() CMRE(+)
C-NC C-C Difference C-NC C-C Difference
All 277 # Effic. Obs. 17 10 160 21
Banks Arith. Mean 0.6752 0.6099 0.0653 0.9127 0.8288 0.0838
Stand. Dev. 0.1539 0.1310 0.0698 0.1264 0.1268 0.0809
Min. 0.4054 0.3534 0.0000 0.4517 0.4474 0.0000
Li-test? 2.926 65.863
p-value (0.004) (0.000)
124 CN # Effic. Obs. 8 5 22 8
Banks Arith. Mean 0.6582 0.6119 0.0462 0.8170 0.7601 0.0569
Stand. Dev. 0.1646 0.1491 0.0507 0.1312 0.1170 0.0598
Min. 0.4301 0.4227 0.0000 0.4517 0.4474 0.0000
153 USA # Effic. Obs. 9 5 138 13
Banks Arith. Mean 0.6889 0.6082 0.0807 0.9901 0.8845 0.1057
Stand. Dev. 0.1437 0.1148 0.0789 0.0394 0.1056 0.0890
Min. 0.4054 0.3534 0.0000 0.7495 0.5302 0.0000

2 Li test: exact p values are reported in round brackets underneath.

not make a comparison with the traditional C-NC model). Kerstens and
Van de Woestyne (2021) do show that convexity is a disputable axiom
within a traditional cost function context.

We believe ours is the first study to correctly compute the cost
function associated with a nonconvex MPPS and compare the results
obtained when the MPPS is formed as the union of either convex or
nonconvex TPPSs. A first empirical conclusion is that constructing a
nonconvex MPPS as the union of nonconvex TPPSs yields estimates
of minimum cost that are about 29% higher than estimates obtained
by constructing a nonconvex MPPS from convex TPPSs. These em-
pirical results are in line with other studies that compare standard
cost functions based on convex and nonconvex PPSs: an example in-
cludes Balaguer-Coll et al. (2007). Therefore, imposing convexity or not
on TPPSs should be more seriously considered when computing cost
functions associated with nonconvex MPPSs.

To assess the price of inappropriately convexifying the MPPS when
computing the cost function, descriptive statistics for the associated
potentially-affected estimates of CE(x,y,w) and CMR#(y,w) are re-
ported in the columns labeled C-C in Table 3: the acronym C-C
indicates that the TPPSs and MPPS have all been convexified when
computing the cost function. Note that the component RCE?(x, y, w) is
not affected by the convexification strategy: therefore, it is not reported
in Table 3. Most of the column and row labels in Table 3 are self
explanatory. The columns labeled “Difference” report the differences
between the C-NC (unbiased) and the C-C (biased) results.

The arithmetic average difference between the C-NC and C-C esti-
mates of CE(x,y,w) is only 0.6752 — 0.6099 = 0.0653 (less than 0.1),
while the average difference between the C-NC and C-C estimates of
CMRé(y, w) is 0.9127 — 0.8288 = 0.0838 (slightly larger, but still less
than 0.1).'® Furthermore, this average difference between the C-NC and
C-C estimates is lower for CN banks than for USA banks.

Li tests are once again applied to all 277 banks to test whether
the two distributions of CE(x, y, w) estimates are equal and whether
the two distributions of CMR#(y, w) estimates are equal. We reject the
null hypothesis that estimates of CE(x, y, w) obtained using the C-NC
model have the same distribution as estimates obtained using the C-C
model (test statistic = 2.926; p-value = 0.004). Moreover, we also reject
the null hypothesis that estimates of CMR#(y, w) obtained using the C-
NC model have the same distribution as estimates obtained using the
C-C model (test statistic = 65.863; p-value = 0.000). Thus, a second
empirical conclusion is that both MCF and CMR seem to be affected by a
convexification strategy. This suggests that the convexification strategy

15 Since here no decomposition must be preserved, we take arithmetic rather
than geometric averages.

used by almost all authors when estimating cost metafrontiers should
be abandoned.

In terms of policy relevance, the convexification strategy may cause
policymakers to misinterpret the technological gaps among different
group of producers. This could lead policymakers to make incorrect
decisions in attempting to close these gaps. In terms of predictive
accuracy, Jin et al. (2024) report in a context of anomaly detection
slightly superior classification results for nonconvex relative to convex
production models.

6. Conclusions

The seminal article of O’Donnell et al. (2008) considers a production
possibilities metaset that is defined as the union of several underlying
group-specific PPSs. The boundary of the metaset is referred to as a pro-
duction metafrontier and the boundaries of the group-specific sets are
referred to as group frontiers. O’Donnell et al. (2008) suggest estimating
the metafrontier under the assumption that group-specific PPSs and the
metaset are convex. Kerstens et al. (2019) develop some key results
showing that both convex and nonconvex group-specific sets in general
yield nonconvex metasets. This indicates that the convexification strate-
gies that are commonly used when estimating production metafrontiers
should not be pursued a priori, but ideally require empirical testing to
confirm that they are innocuous.

This contribution has focused on the way convexification strategies
are used in a cost function context: we have argued that production
possibilities metasets are generally nonconvex, so cost metafrontiers are
normally nonconvex in outputs. We have developed theoretical results
for general PPSs and cost functions in this respect, and also for nonpara-
metric specifications of the same sets and functions under a variety of
assumptions. We have used the data from CN and USA banks in 2019
to explore the consequences of making incorrect assumptions about the
convexity or nonconvexity of PPSs and associated cost functions. We
focused on the consequences of a convexification strategy for estimates
of cost efficiency (CE) and cost-oriented metatechnology ratios (CMRs).
We found that estimates of CE and CMRs are sensitive to convexity
assumptions. Since one counterexample is sufficient to invalidate an hy-
pothesis, the reported results offer a clear case to reject the assumption
that the convexification strategy suggested by O’Donnell et al. (2008) is
empirically innocuous when estimating cost functions. Obviously, our
results carry over immediately to the estimation of revenue functions.
They also carry over to the estimation of short-run profit functions
(see Briec et al. (2004) for relevant arguments).

It is now possible to see how our general results concerning sets
and functions and on nonparametric estimators might be transposed
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to alternative frontier methodologies. First, the transposition to alter-
native nonparametric frontier methods (e.g., conditional convex and
nonconvex models, convex and nonconvex order-m models (see Daraio
& Simar, 2007)) looks straightforward, but remains to be done. Second,
it should be straightforward to assess the way convexification strategies
are used in a deterministic parametric frontier context, but this also
remains to be done. Third, a proper construction of a production
possibilities metaset using stochastic frontier methods has recently
been explored by Amsler et al. (2017): again, a transposition to a
cost function context remains to be developed. Finally, constructing
nonconvex production possibilities metasets using stochastic nonpara-
metric methodologies seems possible (see, e.g., Afsharian (2017) who
focuses on the so-called StoNED approach): again, the cost function case
remains to be developed.

The findings of this study highlight critical implications for poli-
cymakers and managers in industries employing metafrontier studies.
Convexification in cost metafrontiers can lead to biased efficiency
estimates, which may misinform decision-making. Policymakers should
reconsider regulatory frameworks that rely on such estimates to com-
pare firms across different technological environments. Furthermore,
technology-specific cost functions may well be nonconvex: this will
ensure more accurate benchmarking. For managers, the results em-
phasize the importance of selecting appropriate frontier estimation
methods. Firms should be cautious in adopting efficiency scores derived
from convex models, since these may not reflect actual performance
gaps. In industries where technological heterogeneity is prevalent,
decision-makers should leverage nonconvex metafrontier models to
identify performance gaps. This approach can help firms optimize
resource allocation, improve competitiveness, and develop targeted
investment strategies that align with their specific technological and
market conditions.

To conclude, it is possible to outline further research that would
be useful to evaluate how the many different metafrontier applications
discussed in Section 1 are affected by the possibly incorrect assumption
that the production possibilities metaset as well as the resulting cost
function is convex. First, we have limited our empirical analysis of cost
functions to the case where frontiers exhibit VRS: thus, our empirical
analysis could be easily redone for the case where frontiers exhibit
CRS. Second, it is useful to replicate our study with other data sets
from banking and other sectors to see whether convexification creates
a bias and to assess whether convexity of the group cost functions
can be rejected. Third, it remains an open question whether metate-
chnology specific cost functions in the convex case can be computed
via a single linear program. Fourth, developments in this contribution
can obviously be generalized to the cases of the metatechnology-
specific revenue function and to the case of the metatechnology-specific
short-run profit function.
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